FIGURE 7: Compton Site Map

LEGEND
- POST HOLE FILL AND POST MOLD
- OYSTER SHELL CONCENTRATION
- BURNT SOIL (2.5YR 4/6 REDDENED SILT LOAM)
- STRUCTURE DIMENSION
- FENCELINE
- FEATURE NUMBER
- SECTION
ABSTRACT

The Phase I survey which resulted in the discovery of the Compton Site (18CV279) was conducted as a part of the Cultural Resource Survey for the CRJ Associates' Patuxent Point Development near Solomons, Maryland. This early portion of the treatment of Compton, required under the Calvert County Townhouse/Multifamily Project Review Ordinance, was undertaken by Thunderbird Archaeological Associates in the summer of 1987.

A Phase II/III testing/data recovery program was conducted by the Cultural Resource Group of Louis Berger & Associates, Inc. (LBA), during the summer of 1988. This investigation was designed to retrieve information concerning the changes in building organization, use of space, and subsistence practices that were predicted to have left physical evidence at Compton during its occupation in the last half of the seventeenth century as Maryland was transformed from a frontier to an established colony.

Accordingly, concurrent LBA archival research and field sampling of the plowzone middens were initiated. These efforts soon indicated that the occupation of the site was relatively brief and thus could not be expected to exhibit significant changes in the lifestyles of the inhabitants. In a second episode of archaeological fieldwork, and subsequent laboratory analysis, attention thus turned to the recovery of information which enabled a thorough documentation of the site as a representative example for a specific time period of Maryland history. Data were obtained on the architecture, site plan, subsistence, ethnicity, and class of the inhabitants. In addition, the important role of Dutch trade exhibited in the material culture was documented.

The investigations revealed that Site 18CV279 was occupied between circa 1651 and circa 1684, during the ownership of Ishmael Wright. Consisting of a residence, four outbuildings, and two cooking pits, the site was also ringed by pits and superimposed by two major middens where the majority of the artifacts were recovered. While not the focus of the project, prehistoric deposits, consisting of a grave and three cooking pits dating to between the Middle and Late Woodland period (circa A.D. 500-1600), were recorded.

The data embodied in this report contribute to ongoing research in the Chesapeake region and to research issues listed in the Maryland Comprehensive State Historic Preservation Plan. In addition, the archaeological methodology employed at Compton presents new approaches to the investigation of this type of site.
ACKNOWLEDGMENTS

The successful completion of the Compton Site research project was made possible by the contribution of many individuals. Alain C. Outlaw served as Principal Investigator during the field, laboratory, and report writing phases of the project. Senior Historian Dr. Amy Friedlander directed and reported on the historical research and was assisted by Ingrid Wuebber. Henry Holt served as Crew Chief for the second field effort.

For perseverance in conditions of record-breaking hot temperatures and high humidity as well as during periods of heavy rain, the following field personnel deserve special credit:

- Stephan Beas
- Brian Crane
- Lisa Elsinger
- Mike Finn
- Paul Fournier
- Rob Jacoby
- Paul Muto
- Geoffrey Purcell
- Stacey Reutter
- Dave Susice

John V. Bukoski and Charles Dunton served as Logistics Coordinators for the field effort.

Laboratory analyses were conducted under the supervision of Suzanne Rimmler Kahn, Laboratory Director, and Marian Craig, Assistant Laboratory Director. Material Culture Specialists analyzed and reported on special classes of artifacts. These individuals included: Meta Janowitz for ceramics; Marie-Lorraine Pipes for faunal and floral remains as well as small finds; Mallory Gordon, assisted by Nadia Shevchuk, for glass; Sharla Azizi for pipes and prehistoric ceramics; and Byron Simmons for lithics. Laboratory staff involved in the processing included Rudy Ortiz, Gilberto Pena, and Roman Shevchuk. Cathryn Shadock mapped plowzone data and processed the flotations.

Principal authors of the report were Alain C. Outlaw and Dr. Amy Friedlander in addition to Marie-Lorraine Pipes, Meta Janowitz, Sharla Azizi, and Mallory Gordon. Report production was overseen by Lee Nicoletti with the assistance of Suzanne Szanto. Graphic artists for the report were Henry Holt, Evelyn Knecht, Sharla Azizi, and James Hutchinson. Anthony Masso prepared the photographs. A special thanks is also extended to Dr. R. Michael Stewart of LBA for his assistance with the prehistoric material.

The helpful cooperation of a number of individuals outside of LBA also facilitated the completion of the fieldwork. Particular thanks are given to Shay Baird and Tim McVay, CRJ Associates, Inc., staff members at Patuxent Point. The voluntary field assistance and cheer provided by Dr. Henry M. Miller, St. Mary's City Commission, and his staff were invaluable. Finally, the
ongoing administrative, technical, and field help provided by Julia A. King, Southern Maryland Regional Archaeologist, made the documentation of this important site possible. Copies of the report and the Compton Site artifacts are on deposit with the Jefferson Patterson Park and Museum, St. Leonard, Maryland.

John A. Hotopp, Ph.D.
Director and
Principal Archaeologist
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract.</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>viii</td>
</tr>
<tr>
<td>I</td>
<td>Introduction.</td>
</tr>
<tr>
<td>A. Environmental and Historical Setting</td>
<td>1</td>
</tr>
<tr>
<td>B. Previous Investigations</td>
<td>8</td>
</tr>
<tr>
<td>C. Data Recovery Efforts</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>Research Design</td>
</tr>
<tr>
<td>A. Context in Maryland State Plan</td>
<td>9</td>
</tr>
<tr>
<td>B. Research Topic 1: Homelot Building Organization and Its Evolution</td>
<td>9</td>
</tr>
<tr>
<td>C. Research Topic 2: Perception and Use of Homelot Space</td>
<td>9</td>
</tr>
<tr>
<td>D. Research Topic 3: Subsistence Practices</td>
<td>10</td>
</tr>
<tr>
<td>III</td>
<td>Historical Research</td>
</tr>
<tr>
<td>A. Introduction: Purpose and Methods</td>
<td>12</td>
</tr>
<tr>
<td>B. Site Use in Historical Perspective</td>
<td>12</td>
</tr>
<tr>
<td>C. Conclusion</td>
<td>17</td>
</tr>
<tr>
<td>IV</td>
<td>Archaeological Field Data and Interpretation</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>19</td>
</tr>
<tr>
<td>B. Field Methods and Strategy</td>
<td>19</td>
</tr>
<tr>
<td>1. Plowzone Excavation</td>
<td>19</td>
</tr>
<tr>
<td>2. Subsurface Feature Excavation</td>
<td>22</td>
</tr>
<tr>
<td>C. Field Results</td>
<td>25</td>
</tr>
<tr>
<td>1. Plan</td>
<td>25</td>
</tr>
<tr>
<td>2. Historic Features</td>
<td>26</td>
</tr>
<tr>
<td>3. Prehistoric Features</td>
<td>29</td>
</tr>
<tr>
<td>V</td>
<td>Analysis of Artifacts and Historic Features</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>33</td>
</tr>
<tr>
<td>B. Laboratory Methods</td>
<td>33</td>
</tr>
<tr>
<td>1. Ceramic Methods</td>
<td>33</td>
</tr>
<tr>
<td>2. Diagnostic Glass Methods</td>
<td>35</td>
</tr>
<tr>
<td>3. Faunal Methods</td>
<td>38</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4. Small Finds Methods</td>
<td>39</td>
</tr>
<tr>
<td>5. Tobacco Pipe Methods</td>
<td>41</td>
</tr>
<tr>
<td>6. Prehistoric Artifacts</td>
<td>41</td>
</tr>
<tr>
<td>C. Definition and Analysis of Depositional Units: Plowzone</td>
<td>43</td>
</tr>
<tr>
<td>1. Artifacts</td>
<td>43</td>
</tr>
<tr>
<td>2. Soil Chemicals</td>
<td>52</td>
</tr>
<tr>
<td>D. Definition and Analysis of Depositional Units: Features</td>
<td>57</td>
</tr>
<tr>
<td>1. Ceramics</td>
<td>57</td>
</tr>
<tr>
<td>a. Introduction</td>
<td>57</td>
</tr>
<tr>
<td>b. Analysis</td>
<td>59</td>
</tr>
<tr>
<td>c. Intra-site Summary</td>
<td>78</td>
</tr>
<tr>
<td>2. Glass</td>
<td>87</td>
</tr>
<tr>
<td>3. Small Finds</td>
<td>90</td>
</tr>
<tr>
<td>a. Architectural Materials</td>
<td>90</td>
</tr>
<tr>
<td>b. Clothing</td>
<td>97</td>
</tr>
<tr>
<td>c. Utensils</td>
<td>100</td>
</tr>
<tr>
<td>d. Arms</td>
<td>100</td>
</tr>
<tr>
<td>e. Personal</td>
<td>100</td>
</tr>
<tr>
<td>f. Furniture Hardware</td>
<td>104</td>
</tr>
<tr>
<td>g. Summary</td>
<td>104</td>
</tr>
<tr>
<td>4. Pipes</td>
<td>104</td>
</tr>
<tr>
<td>a. Introduction</td>
<td>104</td>
</tr>
<tr>
<td>b. Comparative Study</td>
<td>111</td>
</tr>
<tr>
<td>c. Intra-site Summary</td>
<td>116</td>
</tr>
<tr>
<td>5. Faunal</td>
<td>117</td>
</tr>
<tr>
<td>a. Wildlife Resources and Seasonal Subsistence Strategies</td>
<td>119</td>
</tr>
<tr>
<td>b. Animal Husbandry</td>
<td>127</td>
</tr>
<tr>
<td>c. Butchering Practices</td>
<td>128</td>
</tr>
<tr>
<td>d. Diet</td>
<td>132</td>
</tr>
<tr>
<td>e. Activity Areas Across the Site</td>
<td>136</td>
</tr>
<tr>
<td>f. Summary</td>
<td>142</td>
</tr>
<tr>
<td>6. Floral</td>
<td>142</td>
</tr>
<tr>
<td>E. Dating</td>
<td>143</td>
</tr>
<tr>
<td>VI Synthesis</td>
<td>148</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>148</td>
</tr>
<tr>
<td>B. Research Topic 1</td>
<td>148</td>
</tr>
<tr>
<td>C. Research Topic 2</td>
<td>149</td>
</tr>
<tr>
<td>D. Research Topic 3</td>
<td>151</td>
</tr>
<tr>
<td>E. Research Themes</td>
<td>152</td>
</tr>
<tr>
<td>1. Ethnicity</td>
<td>152</td>
</tr>
<tr>
<td>2. Class</td>
<td>152</td>
</tr>
<tr>
<td>3. Trade</td>
<td>152</td>
</tr>
<tr>
<td>F. Conclusion</td>
<td>153</td>
</tr>
<tr>
<td>Bibliography and References Cited</td>
<td>157</td>
</tr>
<tr>
<td>APPENDIX: Prehistoric Finds</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Chesapeake Bay</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Calvert County Vicinity</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Solomons Island Quadrangle, USGS</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Site Vicinity Map</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Herman Map of 1673</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Site Sample Map</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Compton Site Map</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Section of Cooking Pit (Feature 2) Looking West</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Section of Daub Pit (Feature 8) Looking West</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>8/64" and 9/64" Bore Pipestems in Plowzone</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>6/64" and 7/64" Bore Pipestems in Plowzone</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Plowzone Ceramics</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>Plowzone Oyster Shell by Weight</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Phosphate Distribution</td>
<td>54</td>
</tr>
<tr>
<td>15</td>
<td>Potash Distribution</td>
<td>55</td>
</tr>
<tr>
<td>16</td>
<td>Calcium Distribution</td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>Magnesium Distribution</td>
<td>58</td>
</tr>
<tr>
<td>18</td>
<td>17th Century Dutch Vessel Profiles and Handles</td>
<td>61</td>
</tr>
<tr>
<td>19</td>
<td>Feature 8 Ceramics</td>
<td>84</td>
</tr>
<tr>
<td>20</td>
<td>Feature 3 Ceramics</td>
<td>85</td>
</tr>
<tr>
<td>21</td>
<td>Features 6/16/17 Ceramics</td>
<td>86</td>
</tr>
<tr>
<td>22</td>
<td>Cow Elements</td>
<td>129</td>
</tr>
<tr>
<td>23</td>
<td>Pig Elements</td>
<td>130</td>
</tr>
</tbody>
</table>
LIST OF FIGURES
(Continued)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Sheep/Goat Elements</td>
</tr>
<tr>
<td>25</td>
<td>Interpreted Site Plan</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plowzone Artifacts</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of Plowzone and Feature - Sherd Count and Percentages</td>
</tr>
<tr>
<td>3</td>
<td>Compton Ceramics</td>
</tr>
<tr>
<td>4</td>
<td>Ceramic Types Found in the Compton Features</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of Features 3, 8 and 6/16/17: Ceramic Sherds</td>
</tr>
<tr>
<td>6</td>
<td>Compton European Pipes: Features 3, 8, 6/16/17</td>
</tr>
<tr>
<td>7</td>
<td>Species List</td>
</tr>
<tr>
<td>8</td>
<td>Scheduling of Activities</td>
</tr>
<tr>
<td>9</td>
<td>Species Count by Feature</td>
</tr>
<tr>
<td>10</td>
<td>Species Count by Grouped Features</td>
</tr>
<tr>
<td>11</td>
<td>Compton Faunal: F.3</td>
</tr>
<tr>
<td>12</td>
<td>Compton Faunal: F.6, 16, 17</td>
</tr>
<tr>
<td>13</td>
<td>Compton Faunal: F.5, 8, 9, 21</td>
</tr>
<tr>
<td>14</td>
<td>Compton Faunal: F.7, 19</td>
</tr>
<tr>
<td>15</td>
<td>Compton Faunal: F.14, 18</td>
</tr>
<tr>
<td>16</td>
<td>Pipe Bowl Chronology</td>
</tr>
<tr>
<td>17</td>
<td>Dates of Manufacture for Ceramic Types</td>
</tr>
<tr>
<td>PLATE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Compton Looking North Toward Ravine (Treeline)</td>
</tr>
<tr>
<td>2</td>
<td>View of Plowzone Sampling, Facing West to Patuxent River (Upper Left)</td>
</tr>
<tr>
<td>3</td>
<td>Preparing Site Surface, Looking West Toward Cliff</td>
</tr>
<tr>
<td>4</td>
<td>Feature 3 Facing West</td>
</tr>
<tr>
<td>5</td>
<td>Dutch Green and Yellow Glazed Pitcher, Foot and Flared Handle</td>
</tr>
<tr>
<td>6</td>
<td>Dutch Green and Yellow Glazed Pitcher, Profile</td>
</tr>
<tr>
<td>7</td>
<td>Dutch Redware Pipkin with Characteristic Ear Handle</td>
</tr>
<tr>
<td>8</td>
<td>Dutch Skillet with "Celery-Shaped" Handle</td>
</tr>
<tr>
<td>9</td>
<td>Rim Profiles of Dutch Skillets</td>
</tr>
<tr>
<td>10</td>
<td>Dutch Bowl. Interior Has Green Glaze Over White Slip</td>
</tr>
<tr>
<td>11</td>
<td>Various Dutch Redware Sherds. Top Sherd is Probably North Holland Slipware</td>
</tr>
<tr>
<td>12</td>
<td>North Devon Gravel-Tempered Dripping or Baking Pan</td>
</tr>
<tr>
<td>13</td>
<td>North Devon Gravel-Free Pitcher Base and Pushed-Out Spout</td>
</tr>
<tr>
<td>14</td>
<td>North Italian Slipware Bowl</td>
</tr>
<tr>
<td>15</td>
<td>Saintonge Green and Brown Barrel Costrel Handle</td>
</tr>
<tr>
<td>16</td>
<td>Various Earthenwares, Probably Local</td>
</tr>
<tr>
<td>17</td>
<td>Blue on White Decorated Faience Shallow Bowl</td>
</tr>
</tbody>
</table>
LIST OF PLATES

(Continued)

<table>
<thead>
<tr>
<th>PLATE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Blue on White Decorated Majolica Chargers.</td>
<td>80</td>
</tr>
<tr>
<td>19</td>
<td>Red Earthenware Bowl with Trailed Slip Decoration</td>
<td>81</td>
</tr>
<tr>
<td>20</td>
<td>Orange-Bodied Earthenware Small Bowl, Probably Dutch</td>
<td>82</td>
</tr>
<tr>
<td>21</td>
<td>Potomac Creek Vessel</td>
<td>88</td>
</tr>
<tr>
<td>22</td>
<td>Drinking Vessel - Fragment</td>
<td>89</td>
</tr>
<tr>
<td>23</td>
<td>Wine/Liquor and Case Bottle Finishes</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td>Left: Straw- and Sand-Tempered Daub. Right: Shell-Tempered Mortar</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>Yellow Bricks, Probably Dutch.</td>
<td>93</td>
</tr>
<tr>
<td>26</td>
<td>Architectural Hardware: Door Lock Mechanisms—Banbury Lock, Latch, Sliding Bolt; Handwrought Nails.</td>
<td>94</td>
</tr>
<tr>
<td>27</td>
<td>Soldered Leads. Right: Profile View Showing Small Glass Fragments Still in Place</td>
<td>95</td>
</tr>
<tr>
<td>28</td>
<td>Stocklocks or Banbury Locks. Right: Tumbler Device with Wood Fragments Still Attached.</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>Knitted and Coiled Metal Mesh, Copper Plated with Silver</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>Clothing Fasteners and Sewing-Related Artifacts.</td>
<td>99</td>
</tr>
<tr>
<td>31</td>
<td>Ferrous Metal Knives with Bone Handles. The Top Blade Is Blued through Exposure to Heat</td>
<td>101</td>
</tr>
<tr>
<td>32</td>
<td>Iron Trigger Guard from a Wheel-Lock Musket, Gunflints, and Shot.</td>
<td>102</td>
</tr>
<tr>
<td>33</td>
<td>Beardcomb, Millefiori Bead, Gold-Coated Brass Spur</td>
<td>103</td>
</tr>
<tr>
<td>34</td>
<td>Chest Lock Hardware - Heart-Shaped Hasp with Keyhole and Trowel-Shaped Hasp</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF PLATES
(Continued)

<table>
<thead>
<tr>
<th>PLATE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Datable European Pipes</td>
</tr>
<tr>
<td>36</td>
<td>Flower Hunt (1651-1672)</td>
</tr>
<tr>
<td>37</td>
<td>P.E. - Philip Edwards (1649-1690)</td>
</tr>
<tr>
<td>38</td>
<td>EB - Edward Bird (1630-circa 1684)</td>
</tr>
<tr>
<td>39</td>
<td>Locally and Indian Made Pipes</td>
</tr>
<tr>
<td>40</td>
<td>Pikeman/Minerva - Pikeman View</td>
</tr>
<tr>
<td>41</td>
<td>Pikeman/Minerva - Minerva View</td>
</tr>
<tr>
<td>42</td>
<td>Oyster Shell from Historic Deposit (Feature 8)</td>
</tr>
<tr>
<td>43</td>
<td>Sanguin Clam and Oyster from Prehistoric Deposit</td>
</tr>
<tr>
<td>44</td>
<td>Butchered Bone - Cow and Pig</td>
</tr>
<tr>
<td>45</td>
<td>Sheepshead Skull Parts and Vertebrae</td>
</tr>
<tr>
<td>46</td>
<td>Deer Antlers. Thirteen Point Rack</td>
</tr>
<tr>
<td>47</td>
<td>Fragments of Eight-Row Corn</td>
</tr>
<tr>
<td>48</td>
<td>Vermeer's "Maid Servant"</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

This report presents the results of archival research, archaeological fieldwork, and laboratory analysis pertaining to the data recovery at Site 18CV279, Calvert County, Maryland. The project was undertaken for CRJ Associates (CRJA), Camp Springs, Maryland, by Louis Berger & Associates, Inc. (LBA), East Orange, New Jersey, under a scope of work prepared by the Office of the Southern Maryland Regional Archaeologist, Jefferson Patterson Park, Maryland. The data recovery program was required by the Calvert County Townhouse/Multifamily Project Review Ordinance as the result of a proposal to develop the Patuxent Point property along the north bank of the Patuxent River, near Solomons in Calvert County.

A. ENVIRONMENTAL AND HISTORICAL SETTING

The site is centered approximately halfway between the northern and southern boundaries of the Chesapeake Bay on Maryland's Western Shore (Figure 1). It lies on the north bank of the Patuxent River, a tributary of the Bay. Situated approximately 500 feet downriver from the mouth of Hungerford Creek, 18CV279 was in a relatively flat, open field 35 feet above sea level and 200 feet from the head of a ravine in the vicinity of a spring and its associated wetlands (Figures 2-4; Plate 1). It was located 200 feet from the edge of an eroding bluff which drops 27 feet to the Patuxent River. The field had not been cultivated recently and weeds were waist high. Soils ranged from silt loams to fine sandy loams.

The site's strategic position in the heart of the Chesapeake made it inevitable that its general vicinity would figure in narratives written by the earliest explorers, which date back to 1608 when Captain John Smith sailed the Bay. For the Calvert County area he observed:

The Western Shore, by which we sailed, we found all along well watered, but very mountainous and barren, the valleys very fertile, but extremely thick of small woods as well as trees, and much frequented with wolves, bears, deer, and other wild beasts. The streams were crystal clear and full of fish [quoted in Stein 1960:7].

Later known visitors to Calvert County came in 1621 and settlement began as early as 1642. However, it was not until 1654 that the area was established as a County (Stein 1960:8, 9). The Herman map of 1673 shows the location of settlements in the Chesapeake and it shows what appears to be Site 18CV279 (Figure 5).
FIGURE 1: The Chesapeake Bay
FIGURE 4: Site Vicinity Map
B. PREVIOUS INVESTIGATIONS

Site 18CV279 was discovered by Thunderbird Archaeological Associates (TAA) in the summer of 1987 (Gardner 1988) under a scope of work prepared by Mr. Dennis Pogue, then the Southern Maryland Regional Archaeologist. The plan called for dividing open fields in the project area into strips 20 feet wide (Gardner 1988:6) which were then plowed. Plowzone collection units within these strips were established for the recovery of artifacts in 20 x 20-foot squares.

The site appeared as a dense concentration of oyster shells on the surface with an associated artifact scatter. Limited testing revealed the location of a subsurface feature which was not explored since recommendations were made for additional work. The small collection of recovered artifacts, not available for the LBA study, included 11 pipestems which yielded a Binford date of 1653.60. It was indicated by the researchers that the absence of eighteenth-century ceramics such as "refined salt glazed stoneware" (probably white salt-glazed stoneware) suggested a seventeenth-century occupation for the site (Gardner 1988:12).

C. DATA RECOVERY EFFORTS

There were two episodes of field data recovery by LBA at Site 18CV279. The first project, undertaken between June 27 and July 23, 1988, focused upon the recovery of information from the topsoil for the study of the temporal and functional use of space during the site's occupation. This effort was accomplished through the excavation of 162 2.5 x 2.5 units within the site perimeter for the recovery of artifacts and soil samples. The topsoil was then removed by mechanical equipment to the level of natural soil where cultural deposits were identified and mapped.

The second project, conducted during nine days of fieldwork from August 9 to August 19, 1988, was undertaken to recover more detail on the site plan and to excavate an appropriate sample of the subsurface deposits. An area encompassing 23,200 square feet was uncovered, mapped, and examined on a surface which extended 160 feet north-south and 180 feet east-west. This effort refined the understanding of the site plan and the use of space and allowed for the recovery of important subsistence data which were not available in the plowed topsoil.

The entire project focused on the study of the seventeenth-century remains, according to the requested scope of work and the research design (see Chapter II); however, prehistoric components discovered during data recovery were also investigated.
II. RESEARCH DESIGN

A. CONTEXT IN MARYLAND STATE PLAN

Based upon its date of occupation in the third quarter of the seventeenth century (ca. 1651-1684; see Chapter III), Site 18CV279 is assignable to the Contact and Settlement Period Context (1570-1750) of the Maryland Comprehensive State Historic Preservation Plan. While the site provides data relevant to the themes of class and trade, the research design was organized around the following three research topics: homelot building organization, use of homelot space, and subsistence.

The unexpected discovery of prehistoric cultural features at the site, one of which was carbon dated between A.D. 780 and 920, contributes data for a period overlapping the Middle Woodland (A.D. 500-900) and the Late Woodland (A.D. 900-1600) Context of the State Plan. Research themes to which the recovered information contributes include subsistence and settlement.

B. RESEARCH TOPIC 1: HOMELOT BUILDING ORGANIZATION AND ITS EVOLUTION

The objective of this topic was to record the plan of the farmstead assumed to be at Site 18CV279 and to compare the spatial relationship of its structures to that of other seventeenth-century occupations in the Chesapeake. A measure of homelot evolution was expected to have left evidence at Site 18CV279 since the previous investigations of the site by Thunderbird Archaeological Associates (TAA) had recorded a possible occupation span of 50 to 75 years (Gardner 1988:27).

Keeler (1978:136) proposes that seventeenth-century domestic sites begin as a simple set of wattle fences and few outbuildings. With the passage of time, these fences were replaced with more substantial post-and-rail barriers, the number of buildings increased, and the distinction between forecourt and service yard became more formalized. It was proposed for this study, therefore, that Keeler's thesis be evaluated through the study of the character and placement of the residence, outbuildings, and fences at the site. Evidence of changes in their construction and spatial relationships during the site's occupation would be sought and then compared to contemporary sites in the region for further evaluation of Keeler's proposition.

C. RESEARCH TOPIC 2: PERCEPTION AND USE OF HOMELOT SPACE

This topic was designed to examine, through the study of refuse disposal practices in yard areas between buildings, how the site's inhabitants organized and used space between structures, and to then make comparisons with other regional sites. It has
been suggested that the disposal of refuse in pits on seventeenth-century sites probably represents exceptional events and that true refuse pits are rare on sites of this period (King and Miller 1987:37). Instead, it is proposed that most discard occurred as low-level, habitual trash deposition in select yard areas, reflecting the way in which site inhabitants organized and used spaces between structures. Data on horizontal distributions of artifact classes necessary to assess these patterns require systematic sampling across the site to determine the presence and absence of yard middens and the distribution of individual artifact classes.

Relating these distributional data to information on the location and orientation of structures within the homelot can provide indications about the organization and use of space. If an occupation spanned a number of years, there may have been changes in discard patterns and the implied use of space (e.g., King and Miller 1987). Monitoring such changes requires distributional analyses of time-sensitive artifact classes.

Determining factors for how space was perceived and used may reflect the interaction of several elements, including site function, ethnicity of the inhabitants, and shifts in cultural perceptions and values of the larger community (King and Miller 1987). It was proposed by LBA that the assessment of the role these factors played in determining yard use at Site 18CV279 would rely on information gleaned from documentary sources which could identify the ethnic affiliation and occupations of the site's inhabitants, and the function of the site and its individual buildings. Consideration of the combined documentary and archaeological data from Site 18CV279 relative to other contemporary sites in the region was also important in evaluating the part played by the above-mentioned factors in determining the use of space at the site.

D. RESEARCH TOPIC 3: SUBSISTENCE PRACTICES

This topic was designed to examine European adaptation to new and perhaps unfamiliar resource bases during the period of rapid expansion in the Chesapeake as Native American populations were displaced. The adaptation was particularly evident in the mix of subsistence practices engaged in by the newcomers. Traditional European food procurement, production, and preparation practices were modified as settlers adapted to the physical and cultural landscape of the Chesapeake Tidewater frontier.

Miller (1984) suggests that during initial settlement of the Chesapeake, rural subsistence was based upon slash-and-burn/hoe horticulture and exploitation of benetic fish species, in addition to hunting of land fauna such as deer.

Data on food-related remains, particularly floral and faunal material, were expected to provide information on the subsistence practices of the site's inhabitants. Comparison of these data to
information from contemporary rural and urban sites in the Chesapeake were expected to show the extent to which the occupants of Site 18CV279 conformed to or differed from patterns suggested at these other sites, thus allowing further refinement of models of seventeenth-century colonial subsistence.
III. HISTORICAL RESEARCH

A. INTRODUCTION: PURPOSE AND METHODS

The purpose of the historical research component of this project was to identify the ownership and use of the site and to place it in its appropriate historical perspective. Prior work had assigned a bracket of occupation dating from ca. 1650 to 1720; the focus of the research was, therefore, on establishing ownership and occupation of the site in the second half of the nineteenth century although deed research in county records was taken up to the twentieth century.

A severe fire on March 3, 1882, destroyed most of Calvert County's public records, which at that time dated back to 1658. A second fire on June 27, 1882, burned most of the records that had been salvaged from the first blaze. However, many of these records, including the vast range of probate and court records, had been generated at the colony or state level, and, therefore, duplicates or originals are available at the Hall of Records in Annapolis. Still, one day's research was devoted to records available in Prince Frederick since late nineteenth- and twentieth-century deed and court records have been known to contain recitals and depositions describing earlier events, particularly when it was known that the original records have been destroyed. Unfortunately, this search did not yield information pertaining to the eighteenth and nineteenth centuries.

Two individuals were also consulted. Ms. Ailene Hutchins, a local Calvert County historian who has abstracted material relating to early Calvert County from other county records as well as from documents at the Hall of Records, permitted an LBA researcher to review her information. The name of the original patent was identified from her collection; this was then verified in the original land records, which survive, fully indexed, at the Hall of Records. Ms. Hutchins also possesses information on the nineteenth-century federal census and on land ownership in this vicinity of the site. Dr. Lois Green Carr, Historian for St. Marys County, also consulted with LBA researchers, providing important information on record groups housed at the Hall of Records in which relevant data might be found.

B. SITE USE IN HISTORICAL PERSPECTIVE

The province of Maryland was created by a royal charter issued to Cecilius Calvert, the second Lord Baltimore, in 1632. This charter was remarkable for the extensive powers it conferred upon the proprietor, which included subinfeudation, that is, the power to create a system of feudal relationships through land grants. Lord Baltimore created a tiered system of landholdings. The first series of subdivision comprised the 6,000-acre proprietary
manors reserved to the relatives of the Lord Proprietor (i.e., Lord Baltimore). The next level consisted of the 3,000-acre manors. Independent farmers, limited to 1,000 acres of land, formed the third socioeconomic category, and the fourth category was made up of the tenants who were expected to work the manorial lands (Bailyn 1977:61-62).

The first migration to the colony occurred in 1634 and the process of land partitioning began. As had happened in Virginia, the principal problem was encouraging people to come to the New World, and the headright system, which provided land in return for paying for passage, was introduced in 1640. Would-be manorial lords were required to import first five, then ten, and eventually twenty laborers in order to acquire and then keep the patents to their manors (Bailyn 1977:62-63).

In the first generation of settlement, acquisition of land was fairly easy and upward mobility from the tenant to small landowner was common. The social distance between servant and small planter, who may himself have begun his career as a tenant, was relatively narrow (Walsh 1974:118-19). From about 1680 to 1710, however, the conditions that had encouraged fluid movement from tenant to farmer changed. Falling tobacco prices and tightened credit restricted the ability of modest planters to purchase the much-needed labor while improved conditions in England and expanded opportunities in Pennsylvania and Carolina reduced the flow of potential workers to the already tight Chesapeake labor market (Dunn 1984:162-64; Henretta 1984:282; Walsh 1974:119). The manorial lords and the first generation of settlers, who had prospered under relatively favorable circumstances, commanded an advantageous position with regard to land and soon obtained the advantage in labor, as well. As early as the mid-1660s, economic opportunities for new settlers arriving without capital were limited and opportunities for civil participation suffered a parallel deterioration. The social distance between large landowners and their tenants and former tenants increased at the turn of the century (Walsh 1974:126-27). These distinctions increased over the course of the eighteenth century (Henretta 1984:242).

This transition in the economic environment and its accompanying social stratification formed the backdrop during which this site was occupied. The site was originally contained in the 75-acre Compton Patent, which was surveyed in 1651 (Certificate, August 8, 1651, Calvert County, Certificates AB&H, f. 322; Patent, February 11, 1658, Calvert County, Patents Q, f. 401). Ishmael Wright, the patentee, assigned his rights to Antoine LeCompte, who is believed to have returned them to Wright after 1658. The timing of the survey corresponds to surveys of adjacent patents to William Stephens, John Obder, and John Ashcomb (also spelled "Ashcom"), all of which date to 1651 (Calvert County, Patents Q, ff. 5, 227). The patentees appear to have migrated at this time, and all of them soon acquired additional lands elsewhere in the colony, typically in return for importing family members and
servants. The earliest rent roll merely states that the freehold had been surveyed for Ishmael Wright and patented by LeCompte (St. Mary's, Charles and Calvert Counties and Isle of Kent, Rent Roll O, f. 76). LeCompte took up land in Dorchester County in the late 1650s where he later became a Justice of the Peace in 1669. It is therefore possible that LeCompte was resident at Compton in the 1650s and 1660s (Culver 1917:46).

By 1684, John Ashcomb, who owned the Point Patience tract as well as several properties in St. Marys, Calvert, and Dorchester Counties, acquired the Compton Patent (Will of John Ashcomb, July 16, 1684, Calvert County, Wills G, f. 65). He died, leaving one-half interest in Compton to his eldest son Charles and the other half to his youngest son Samuel. He left Point Patience to his second son Nathaniel. Samuel and Nathaniel died in 1686 and 1687 respectively, leaving their property to their eldest brother Charles, who appears to have owned all of his father's land by the time he died in 1702 (Baldwin 1906:14; Baldwin and Henry 1917:237).

Charles Ashcomb's will, probated in November 1702, does not mention the Compton Patent by name, and two bequests in the will may refer to the tract (Will of Charles Ashcomb, October 14, 1702, November 26, 1702, Original Wills, Box A, Folder 34). Charles had three sons (Charles, John, and Samuel) and two daughters (Martha and Winifred). Both of his daughters were under age 16 at the time he wrote his will in October 1702, and Charles and John both appear to have been under age 18, based on cautionary clauses in the will concerning management of timberlands during their minority. Charles was the first of the children mentioned in the will, and since the English naming pattern dictated naming the eldest son for his father, the name together with the structure of the will suggests that Charles was the oldest son and perhaps the oldest child. Thus, all of the children seem to have been under age at the time their father wrote his will and then died.

The age of the children bears upon the interpretation of the lands named in Charles's will. The first of the two possible references to Compton Patent in this will leaves a "tract containing 75 acres now called my quarter ajoyning to the land of poynt patients" to Samuel; the second bequeaths the "remainder" of his estate "in this province as in England or elsewhere" equally to his three sons. The size and location of the first reference suggests that Samuel inherited the Compton Patent. However, an undated notation in the rent rolls covering the period 1651-1776 states that the 75-acre Compton Patent, which had been surveyed on August 8, 1651, for "Ismael" Wright and which was located on the north side of the Patuxent River, was "possessed by John Dorsey for Cha[rl]es Ashcombs Orphans" (Calvert, Prince Georges and Frederick Counties, Proprietary Rent Roll, Vol. 3, No. 1, p. 23). Thus, the residual property noted in Charles Ashcomb's will could also have contained Compton
Patent, which, if so, was apparently occupied in the early eighteenth century by a John Dorsey.

In 1726, Charles Ashcomb had Compton resurveyed and enlarged. It was not uncommon for resurveys reflecting the actual acreage contained within original boundaries of the patents to be larger than the original grant. In the 1730s, the Lord Proprietor attempted to recover the lost income that the surplus lands represented by offering discoverers of the surplusage to appropriate the land. This policy resulted in widespread confusion and contention and was abandoned (Hartsook and Skordas 1968:27-28). However, in Ashcomb's case, the resurvey took in not only additional acreage contained within the original bounds but also "what vacant land should be found thereunto contiguous whether cultivated or otherwise" (Re-Survey for Charles Ashcomb, Calvert County, Unpatented Surveys, Certificate #36). Not only, therefore, did Charles Ashcomb, presumably the eldest son of Charles Ashcomb, own this property by 1726, but it appears to have been a relatively isolated and perhaps an abandoned area on the periphery of Ashcomb's main holding at Point Patience, a plantation that was itself subsidiary to the property in St. Mary's County.

Within a year of the resurvey, Charles Ashcomb died; he was at that time a resident of St. Marys County (Will of Charles Ashcomb, November 20, 1726, March 8, 1726/7; St. Marys County, Wills, Vol. 19, p. 127). He left his wife, Judith; one son, Samuel; and three daughters, Martha, Susannah, and Elizabeth. By this time, his brother John had also died. Charles bequeathed his slaves to his wife and children and all of the real estate to Samuel, although Judith was named sole executor. As had been the case with his own father's estate in 1702, the four children appear to have been under age at the time of Charles's death. The will appoints Jeremiah Sheredine and Philip Key trustees on behalf of the children in the event that their mother remarries and her new husband "proves otherwise than kind to my poor children or goes about to commit waste upon the land." Thus, the undated entry in the rent rolls for Compton Patent, which refers to Charles Ashcomb's "Orphans," might conceivably reflect management of the estate following Charles Ashcomb's death in 1727. Under this interpretation, John Dorsey would have been in possession of the tract in the 1720s or later rather than at the turn of the century.

By September 5, 1727, Judith had married Thomas Brooke. She and her husband filed reports on the administration of Ashcomb's estate in September 1727, May 1728, and November 1732. There is no enumeration of real estate although tenants and crops of tobacco and Indian corn are mentioned (Inventory for Charles Ashcomb[b] of St. Marys, September 5, 1727, St. Marys County, Inventories, Liber 12, f. 257; Account of Charles Ashcomb[b] of St. Marys, May 29, 1728, St. Marys County, Accounts, Liber 9, f. 195; Account of Charles Ashcomb[b] Estate, November 21, 1732, St. Marys County, Accounts, Liber 11, f. 525).
In 1745, Daniel Rawlings bought Rawlings Purchase, which bounded Point Patience and "Ashcoms" (now Hungerford) Creek (information provided by A. Hutchins). This seems to have included Compton Patent as Margaret Rawlings appears in the 1753-1768 Rent Roll as the "possessor" of the 75-acre Compton Patent (Calvert County, Rent Roll, Vol 24, No. 4, p. 21). Daniel Rawlings, a merchant and proprietor of a mill, died in March 1759 and by September Margaret Rawlings, who was either his widow or his daughter, had married Benjamin Parran (Inventory of Daniel Rawlings Estate, September 4, 1759, Calvert County, Inventories, Liber 67, f. 274). The Debt Book for 1758, however, indicates that Benjamin Parran already owned Compton (Calvert County, Debt Book, 1758, f. 10).

Despite the confusion between Rawlings and Parran dating the ownership of Compton Patent, the record up to the middle of the eighteenth century appears fairly clear. After initial survey in 1651, Compton Patent was part of the large holdings belonging to the Ashcomb family from some point before 1684 until sometime after 1727. By 1745, it appears to have been acquired by Daniel Rawlings, and from Rawlings the land went to Parran, presumably as a result of the marriage of Margaret Rawlings and Benjamin Parran. The Parran family also acquired Point Patience sometime after the death of Charles Ashcomb II in 1727, since Ashcomb left the plantation to his son Samuel. Point Patience remained in the Parran family until the 1940s, when it was sold to the United States government for use as a naval station (Stein 1960:70).

With the possible exception of LeCompte, the various owners of the Compton Patent in the seventeenth and eighteenth centuries maintained their principal residences at locations other than the site. While much of the research on the colonial Chesapeake has emphasized economic and social development, which put tenants at the bottom of the social ladder and the great planters at the top (see syntheses by Nash 1984 and Henretta 1984), studies by Carr and Walsh (Carr and Walsh 1980; Walsh 1983) suggest that rural consumer behavior reflects a qualitative improvement in standard of living after about 1715-1720 that was felt by all socioeconomic groups.

Socioeconomic distinctions were also reflected in rural domestic architecture. In the late colonial period, Stiverson (1974:202-203) states, a tenant house in southern Maryland contained one or two rooms, providing little of the privacy associated with the larger dwellings of substantial planters. These tenant dwellings were framed structures of one and one-half stories that may or may not have included a plank floor. It was unlikely that the windows were glazed and the chimney was probably wooden rather than stone or brick. While planters built separate kitchens, detached kitchens do not appear to have been a feature of tenant households, and the few outbuildings comprised corn houses and tobacco barns. Stables, barns in which to shelter animals, and slave quarters were virtually nonexistent, although small dairies, tub mills, and fruit orchards were not uncommon.
The size and complexity of the site, as well as the temporal boundaries implied by the artifacts, suggest that the Dorsey tenancy, associated with the Ashcomb period, was located elsewhere on the 75-acre parcel.

It has, thus far, been impossible to link the transfer of Compton from the Parran family to the Somerville family, although Charles S. Somerville is known to have owned the land on which the site is contained when he died in 1870 (Calvert County, Chancery Records, Liber SS, f. 192). No Somervilles appear in Calvert County in the 1840 federal census, and only Alexander Somerville is listed in the county in 1850. C. S. Somerville was listed in Baltimore. The division of Charles S. Somerville's estate was contested in the early 1880s and eventually two tracts, the one containing 94 acres and the second containing 56 acres, were sold to Edwin D. Weems in October 1883 (Richard A. Bafford et al. to Edwin D. Weems, October 29, 1883, recorded November 8, 1883, Calvert County Deed Book [hereinafter cited as CC] SS6:70). The site appears to have been contained in the 94-acre parcel.

Weems left the property to his wife Rosetta when he died in 1908 (Will of Edwin D. Weems, March 29, 1899; proved September 2, 1908, Calvert County Will Record No. 1, Liber VCC, f. 405). The residual rights to the 150-acre property were left to Rosetta and Edwin's children: Lillian, Clarence, Edwin, and Martha, who appear to have held it jointly up to the early 1950s. None of them appears to have remained in Calvert County, but as each of them died, the surviving siblings inherited his or her undivided interest until Rosa Weems, widow of Edwin Weems sold her interest in the property to Louis L. Goldstein and his wife Hazel in 1953 (Rosa B. Weems et al. to Louis L. Goldstein and wife Hazel, December 8, 1953, December 8, 1953, CC AWB38:74). In 1983, Larry Lamson purchased the remaining interest of the Weems' heirs (Edwin W. Winkler et al., December 21, 1983, March 30, 1984, CC ABE 315:24). Lamson and Goldstein sold the entire property, comprising about 90 acres, to the Patuxent Point Limited Partnership in June of 1987 (Larry L. Lamson et al. to Patuxent Point Ltd. Partnership, June 24, 1987, August 17, 1987, CC ABE 413: 595).

C. CONCLUSION

Surveyed in 1651, Compton Patent had been incorporated into larger holdings owned by John Ashcomb by 1684. Either of the two prior owners, Wright and LeCompte, could have occupied the site. LeCompte, however, would have had to have been in residence prior to the late 1660s when he appears to have moved to Dorchester County. Ashcomb and his heirs were substantial landowners with plantations in St. Marys as well Calvert County. Indeed, the St. Marys lands appear to have become more important that the Calvert County plantations, and Compton Patent itself may have been an extension of the larger Point Patience Patent where there was a fairly substantial occupation. Nathaniel Ashcomb (d. 1687) died three years after inheriting Point Patience from his father in
1684, and his brother Charles (d. 1702) maintained his principal residence in St. Marys County as did his son Charles (d. 1727).

The Parran family seems to have established a sizeable presence at Point Patience in the eighteenth and nineteenth centuries, according to the local history. The transactions separating Compton from the Point Patience property have not been recovered, but similar research on Varina and Dutch Gap Plantations in the James River valley, immediately below the present site of Richmond, indicates that neighboring planters sold parcels on the periphery of their adjoining plantations among themselves. The parcels themselves, moreover, typically possessed boundaries and hence a spatial identity that dated to their initial survey in the early seventeenth century (Garrow et al. 1983:121-24).

Based on the date of the survey of Compton and of the neighboring patents, it is clear that the site could not have been occupied prior to 1651. Assigning an end date is more difficult. It is possible that the site was abandoned when it was incorporated into John Ashcomb's holdings prior to 1684. On the other hand, it is possible that neither LeCompte nor Wright occupied the patent, and Ashcomb may have seated the first tenant at the site although the dating of the artifacts and the complexity of the site would tend to argue against this interpretation. If the undated reference to "Charles Ashcom[b]s Orphans" and possession of Compton by Dorsey refers to the children of the first Charles Ashcomb, who died in 1702, then it is likely that the land was still worked in the early eighteenth century although Dorsey's complex may have been located elsewhere within the 75-acre parcel. The resurvey of 1726, then, suggests that it may have been abandoned by the mid-1720s.
IV. ARCHAEOLOGICAL FIELD DATA AND INTERPRETATION

A. INTRODUCTION

In order to address the three research topics (building organization, use of space, and subsistence practices) it was necessary to recover information from both the plowzone and the subsurface cultural features. Both sources of data were needed for the study of structures and the use of space; however, the only reliable information for the subsistence topic came from the buried features, where bone from discrete contexts could be dated and was not subject to post-depositional fragmentation and erosion.

B. FIELD METHODS AND STRATEGY

1. Plowzone Excavation

A planned systematic surface collection of Site 18CV279 was not executed, by agreement with the Regional Archaeologist, since there was virtually no surface visibility aside from scattered oyster shells in the area where the site was originally discovered. The powdery consistency of the soil as a result of extreme drought conditions made the procedure impractical even after the entire site was carefully overturned to a depth of 4 inches with the teeth of a bulldozer.

Plowzone excavation was therefore immediately initiated with the establishment of a grid of 10-foot squares which enclosed the site in a 150 foot square area. The grid was tied to a baseline located south of the site along a treeline which was protected from construction activities (see Figure 4). Those units which formed intersecting east-west and north-south lines through the estimated center of the site, where the topography suggested the dwelling was located, were excavated first to define the edges of the occupation area where artifact counts diminished. In each of the selected 10-foot-grid squares, a 2.5-foot unit was excavated to subsoil and all soils removed were sifted through 1/4-inch mesh.

Concurrent with these excavations, the field quantification of artifacts, oyster shells, and bone from each unit dictated where additional units were placed until it was estimated that 10 percent of the plowzone over the site had been sifted (Figure 6). This resulted in the excavation of 162 2.5-foot squares which not only assured a 6.25 percent sample of the entire site but also allowed a 12.5 percent sample of those areas the field quantification of ceramics indicated were discrete middens (Plate 2). Following the excavation of 162 squares and prior to mechanical removal of the topsoil, soil samples were recovered from the walls of 57 excavated units (see Figure 6) to assist in
the identification of activity areas based upon the presence of varying concentrations of soil chemicals across the site.

Cultural features revealed in the natural soil levels by test units served to guide where the plowzone would be removed to reveal the plan of the site. The distribution of artifacts throughout the excavated area, however, played the most important part in defining the edges of the site and thereby the area needing to be completely uncovered.

The soil over the entire site was then mechanically removed from a 140 foot x 150 foot area by two pans, assisted by a bulldozer made available from the construction project. The procedure employed the bulldozer to push each pan to remove the top 4 inches of soil. Once the lower surface was established, a single pan carefully removed the remaining soil until subsoil was reached. While most of the plowzone was successfully removed by the machines, the site was flat-shoveled and troweled for the identification of cultural features and to ensure that all plowzone materials which could have dated later than the cultural features appearing in subsoil, were removed. The site was then mapped at a scale of 1" = 10', following the re-establishment of the same grid, at subsoil level, which had been used to guide the recovery of the plowzone sample.

Before departing the site after completing this phase of the project, LBA carefully covered all major cultural features with heavy mil polyethylene plastic sheets. Pin flags marking the location of features were removed; however, all reference points, including grid nails, were left in place. The outside perimeter of the site was also marked with pin flags since heavy construction equipment was being employed along the eastern edge of the site.

2. Subsurface Feature Excavation

The site lay open for two weeks following the completion of the plowzone excavation and site mapping before LBA was requested to initiate the excavation of subsurface features. Inclement weather during these two weeks of inactivity allowed major portions of the site to be covered with silt, which masked the locations of cultural features. It was thus again necessary to once more carefully flat-shovel and trowel the surface of the site following the removal of the polyethylene (Plate 3). This work was carried out to rediscover cultural deposits and to ensure that intrusive material post-dating the seventeenth-century occupation of the site, which could have contaminated the exposed deposits as the site lay open, were removed.

The site was again mapped (Figure 7) but at a scale of 1/4" = 1' and the excavation of cultural deposits commenced. The deposits were mapped by triangulation, using the same grid points which had been established to map the site originally.
The eastern halves of refuse pits were then excavated by natural levels and profiled to document the sequence of their filling and to determine each feature's original function. Once the stratigraphy had been recorded, the remaining portions of the deposits were screened by natural levels and a 1/2 cubic foot flotation sample was removed from every major layer. Concurrent with the excavation of features, the architectural and fence postholes/post molds were also mapped; however, priority was given to the full excavation of deposits. A limited sample of the structural and fence postholes/post molds was investigated since the site plan had already been recorded and there were no chronological questions that needed to be explored.

C. FIELD RESULTS

1. Plan

All cultural features were contained within an area 140 feet north-south by 120 feet east-west. The site plan (see Figure 7) consists of a central building concentration ringed by refuse deposits. The buildings encompassed a 35-foot radius around a point near the center of the grid, indicating that the plowzone sample clearly covered the principal buildings as well as all the surrounding yards. The plowzone data, which include artifact densities and the surface oyster shell scatter, when combined with the underlying site plan strongly suggest that the entire occupation area was examined. While one fence line was discovered to run at least 152 feet east-west through the site, and probably post-dated the domestic occupation of the property, all major elements of the homelot were uncovered.

The architectural elements at the site consist of a house (Structure 1) and 4 outbuildings (Structures 2-5). A series of post impressions delineate an early animal pen (Fence 1), a later animal enclosure (Fence 2), and a fence line (Fence 3) which marks the perimeter of a later field but post-dates the domestic occupation (see Figure 7).

There are as well two discrete cooking pits (Features 2 and 12), three pits related to the preparation of mortar near a former spring (Features 13, 14, and 18), and an isolated burned area (Feature 26). Twelve pits (Features 20, 3, 17, 16, 6, 9, 8, 11, 21, 5, 7, and 19) were apparently excavated for clay and later used for refuse disposal.

Four prehistoric cultural features were also discovered. They consist of three cooking pits (Features 4, 15, and 22) and a single human grave (Feature 1). While two cooking pits are within 9 feet of each other, the third pit and the grave are isolated in other portions of the site.
2. Historic Features

With the possible exception of the fence line across the northern portion of the site, the seventeenth-century features appearing in subsoil and the objects recovered within them are considered to date to the occupation of the site between circa 1651 and circa 1684 since no later intrusions were observed during the two episodes of troweling and mapping the subsoil surface prior to excavation.

A 16 foot x 16 foot (256 square feet) earthfast house (Structure 1), supported by posts set in the ground (Carson et al. 1981), was delineated by a pattern of six postholes/post molds. Evidence in the north wall indicates that the house was raised in side wall units, while three smaller posts along a line five feet from and parallel to the west gable mark the position of the chimney. Burnt daub from the fill of the post mold in the southeast corner of the house indicates that the chimney was built of wattle and daub. Yellow Dutch brick found nearby evidently was used for the hearth. Several fragments of turned lead provide evidence that the inhabitants were able to afford glass in their windows rather than simple shutters.

Two of the four outbuildings at the site were similar in dimension and form. Off the east gable of the house, an 18 foot x 20 foot (360 square feet) structure (Structure 3) was oriented on a north-south axis, while the second building (Structure 4) ran east-west and measured 18 feet x 25 feet (450 square feet). Both were marked by four large corner posts, a small post centered on each gable wall, and two large posts set five to six feet along the side walls on only one end of each structure. These buildings are thought to have served as storage structures, such as tobacco barns, based upon their size, their lack of chimneys, and their similar construction techniques. The function of the adjacent 10 foot x 10 foot (100 square feet) building (Structure 2) and of the isolated off-square structure slightly larger than 5 feet x 6 feet (30 square feet - Structure 5) to the west is unknown although both may have been used to store grain.

The plan and architectural details at the site argue for a short occupation at 18CV279. The three outbuildings near the house, for example, were parallel to each other, suggesting that there was a single general building episode. In addition, there are no apparent additions to any of the structures on the site. There are also no repairs to the house evident in the post impressions marking the former location of the walls and chimney for this structure. By seventeenth-century accounts, earthfast structures would not stand beyond five years without repair (Outlaw 1989:41) and chimneys often caught on fire, requiring extensive rebuilding. Thus, the combined evidence of a single general building episode, the lack of additions to the structures, and the lack of indications that repairs were made strongly suggests that the site occupation was short, perhaps no more than a decade.
There were three sequences of fences at 18CV279. The earliest line of post impressions formed a diamond-shaped post-and-rail enclosure (Fence 1) situated in the western half of the site. Posts were set on 17-foot and 18-foot centers for the eastern side, with one interruption where a 3-foot-wide gate was located in the middle of the eastern side. The distances between posts were not consistently followed for the western half, which also includes segments on 23-foot and 12-foot centers and where a tree was used to anchor two lengths of rails. The postholes are 1.8 feet x 2.0 feet, while the molds average 6 inches in diameter.

The enclosure was apparently part of the first construction at the site since its posts are cut into by the posts for Structures 1 and 4 as well as Pits 16 and 17. It also overlaps the area where Structure 1 was later built and where Pits 8, 16, and 17 were excavated. Interestingly, Pit 8 was excavated along the same axis as this early fence, suggesting that traces of Fence 1 survived during the subsequent phases of occupation. A smaller version of Fence 1 was constructed east of Structure 5 with driven posts 6 inches x 3 inches in diameter on 2 foot to 3.5 foot centers (Fence 2).

Both Fence 1 and Fence 2 were apparently installed to pen livestock. Fence 2 evidently replaced Fence 1 to clear space for the construction of the dwelling and to create a yard west of the building complex. A third fence (Fence 3) runs east-west along the northern portion of the site, following the edge of the field parallel to the ravine. Although no artifacts were recovered in association with this fence, its position straddling Structure 2 and on a different axis from that of the buildings, as well as its small, 1 foot square close-set posts (11'-13' centers), suggest that it post-dates the abandonment of the site.

Two elliptical pits (Features 2 and 12) located southeast of the building cluster were probably dug and used exclusively for cooking. They originally measured approximately 4 feet in diameter and were opened to a depth of 2 feet. Their contents consisted of alternating thin layers of wood ash and charcoal and they were generally devoid of artifacts, shell, and faunal remains (Figure 8). Located near Feature 8, where the greatest quantity of oyster shell on the site was excavated, the two pits are suspected to have been used to steam these shellfish.

East of Structure 3, three shallow pits were discovered together (Features 13, 14, and 18). Each pit contained concentrations of mortar and building materials such as nails. The stratigraphy of Feature 13, which contained sorted gravels, could only have been formed by the movement of water from below to the ground surface and it is therefore suspected that it demarcates the location of a former spring. This source of water would account for the absence of a well in the settlement and the presence of mortar, which required water for preparation, in adjacent pits.
STRATUM 1 • 10YR 5/4 YELLOWISH BROWN MOTTLED SANDY LOAM WITH INCLUSIONS OF DAUB, SHELL AND CHARCOAL
STRATUM 2 • 10YR 4/1 DARK GRAY MOTTLED ASH WITH INCLUSIONS OF DAUB, SHELL AND CHARCOAL
STRATUM 3 • 10YR 5/3 BROWN MOTTLED SILT
STRATUM 4 • 10YR 6/2 LIGHT BROWNISH GRAY MOTTLED ASH WITH INCLUSIONS OF DAUB SHELL AND CHARCOAL
STRATUM 5 • 10YR 5/3 BROWN MOTTLED SANDY SILT

FIGURE 8: Section of Cooking Pit (Feature 2) Looking West
At a location off the northeast corner of Structure 1, the subsoil was burned. This reddened area (Feature 26) marked the location of three overlapping fires which left their imprint as three circular scorched patches of clay. The purpose of the surface fires which formed this feature are unknown.

The balance of the historic features at Site 18CV279 were irregular pits probably originally dug to obtain clay to build the dwelling's chimney. They were subsequently used by the inhabitants as refuse dumps.

The deepest and earliest pit was Feature 8, which reached a depth of 3.7 feet below subsoil (Figure 9). The remainder of the irregularly shaped pits were shallower (Plate 4) and were located in five areas of the site that were treated as discrete depositional units during the analysis (see Chapter V).

3. Prehistoric Features

Three circular pits (Features 15, 4, and 22; see Figure 7) and a grave shaft (Feature 1) are attributed to the prehistoric occupation of the site at an interval between the Middle and Late Woodland (between ca. A.D. 500 and 1600). A single radiocarbon date from Feature 15 places at least part of this occupation between A.D. 780 and 920. Since the focus of the Compton excavation was on the historic components of the site, the study of the prehistoric sample of artifacts was limited to a brief descriptive analysis which can be found in the Appendix.

In the absence of artifacts in the fill, it was suspected during fieldwork that the burned pits were prehistoric, based on the presence of noticeably smaller oyster shells and an abundance of razor clams, neither of which was recovered from nearby historic deposits.

Under authorization from the Office of the Maryland State's Attorney for Calvert County, a rectangular soil stain suspected of being a human grave was excavated to a depth of 2 feet before sterile subsoil was reached. At a level 1.5 feet above the bottom end of the shaft, the faint outline of the upper part of a human skull with head facing south appeared as a slightly darker stain than the surrounding matrix of grave fill. Neither bone nor tooth enamel survived and no other bone was present. The only artifact recovered in the fill was a small, nondiagnostic Prehistoric ceramic fragment tempered with coarse crushed quartz (see Appendix). Further, the grave fill was penetrated by a posthole/post mold (Feature 10) belonging to Structure 4. The absence of historic artifacts in the grave fill in a location where the topsoil indicated a historic midden was present led to the conclusion that the grave was prehistoric. Also, with the short historic domestic occupation of the property (see Chapter III), it is highly unlikely that the grave location would be forgotten and incorporated within the wall of Structure 4. The prehistoric origin of the grave was also reinforced by the
STRATUM 1 - 10YR 5/3 BROWN, ASH STAINED COMPACT SILT, WITH INCLUSIONS OF DAUB AND CHARCOAL. HEAVILY MOTTLED

STRATUM 2 - OYSTER SHELL LENSE

STRATUM 3 - 2.5Y 4/2 DARK GRAYISH BROWN ASH STAINED LOOSE SILT, MIXED WITH CHARCOAL. HEAVILY MOTTLED.

STRATUM 4 - OYSTER SHELL LENSE

STRATUM 5 - 10YR 5/3 BROWN COMPACT SILT LOAM. HEAVILY MOTTLED.

STRATUM 6 - 2.5Y 4/2 DARK GRAYISH BROWN ASH STAINED SILT. LIGHTLY MOTTLED.

STRATUM 7 - 2.5Y 5/4 LIGHT OLIVE BROWN COMPACT SILT LOAM. LIGHTLY MOTTLED.

STRATUM 8 - 10YR 5/4 YELLOWISH BROWN SILTY CLAY LOAM. HEAVILY MOTTLED.

FIGURE 9: Section of Daub Pit (Feature 8) Looking West
fact that bone had not survived in the grave whereas animal bone did exist in good condition in nearby historic pits at comparable depths and in similar soils. The rise and fall of the water table over a considerable amount of time, causing alternating periods of wet and dry soils, is suspected as having caused the complete deterioration of this skeleton.
V. ANALYSIS OF ARTIFACTS AND HISTORIC FEATURES

A. INTRODUCTION

This chapter begins with a description of the laboratory procedures used during the analysis of the Compton collection. The discussion is followed by a study of material from portions of the plowzone and from certain features which formed depositional units used to address the research questions. Finally, the last section covers dating of the site, using the combined evidence from the artifacts, the architecture, and the documents.

B. LABORATORY METHODS

1. Ceramic Methods

The ceramic collection from the Features at the Compton Site was analyzed using a standardized format developed by the LBA Cultural Resource Group. This format is based on the South/Noel Hume typology (South 1977), as modified for use in a computerized system (Louis Berger & Associates 1987; Stehling in Geismar 1983; Stehling and Janowitz 1986).

The sherds were tabulated at a Stage II (Intensive) level of analysis. Stage II analysis includes two types of information: first, dating sherds through the identification of their body types and surface treatments and, if present, maker's marks; and second, determination, where possible, of broad categories of vessel function. In addition, it includes data about vessel form, decorative motif, minimum number of vessels (MNV), percentage of completeness, and, for pieces assigned an MNV, amount and location of wear.

As the first step in the Stage II analysis, all of the sherds from the Features were laid out, sorted by type, and cross-mended in order to note in which proveniences cross-mending occurred and to determine minimum numbers (MNVs). MNVs and Vessel Numbers were assigned to sherds which either cross-mended between proveniences or which mended to form more than 25 percent of a vessel within one provenience. Vessel numbers ran consecutively throughout the site. MNVs were also assigned to non-mending but distinctive rim sherds and to unique body or base sherds.

What follows is a description of the computer coding used in the study of the Compton material. The coding sheets are not a part of this report but will be filed with the other project documentation.
Type/Subtype

This is a five-character code consisting of three letters and two numbers. The first letter is always C for ceramic. The second letter refers to general ware groups: E for coarse earthenwares; R for refined earthenwares; S for coarse stonewares; F for refined stonewares; P for porcelain; and 0 for other and unidentified. The third letter refers to specific ware types, e.g., R for Redware, D for delftware (tin-enameded wares), etc. The numbers following the letter code refer to particular decorative treatments or named types, e.g., CER04 - Redware with Dark Brown to Black Glaze, CRD55 - Majolica with Blue Decoration, etc. Type/Subtype may either have specific dates or may be descriptive and undated. Sources for the dates include, but are not limited to, South (1977), Noel Hume (1972 and 1977), Hurst, Neal, and Van Beuningen (1986), and Wilcoxen (1986).

Count

The count is simply the number of sherds in each category.

Begin Date/End Date

The Begin and End Dates are automatically assigned by the computer to each dated Type/Subtype, but when more precise dates can be determined from makers' marks or particular decorations or forms, this field is filled in on the coding sheet, and the more specific dates are entered into the computer.

Form

Form indicates the shape and possible function of the sherd or vessel. General categories, such as "Flatware - Base," are used for sherds whose small size or ambiguous characteristics make determination of form problematical.

Decoration/Motif

This includes descriptions of specific decorations (e.g., "Chinoiserie - landscape"), pattern names (e.g., "Willow"), and general descriptions (e.g., "Blue").

Maker's Marks

The Maker's Mark category is used for the actual marks seen on sherds. No ceramic maker's marks were present on the Compton ceramics.

Minimum Number of Vessels MNV

Minimum Number of Vessels is filled in if a sherd has been assigned an MNV (i.e., if it has been assigned a Vessel Number, or if it represents a non-mendable Vessel, or if it is unique).
Wear

This field is designed to note both the amount and location of abrasions, cuts, nicks, etc., on a vessel in order to aid in the determination of its use. At the simplest level, lack of wear can help identify commercial deposits (Geismar 1983), but location and amount of wear also provide information about the actual utilization of vessels (Griffiths 1978).

Percentage Complete

Percentage Complete aids in the identification of different types of deposits by monitoring artifact fragmentation. The codes used are "1" for less than 25 percent complete, "2" for 25 percent to less than 50 percent, "3" for 50 percent to less than 75 percent, "4" for 75 percent to less than 100 percent, "5" for 100 percent complete, and "6" for vessels which were recovered intact and did not need to be mended.

Comments

Comments is a numerical code that refers to information not covered in the other fields. The most common entry is 19, which translates as "See Written Comments." Another common code is 99 for "Burned." These written comments can be found on the computer data input records.

Function

This field refers to the following general functional categories: Teawares; Tablewares; Food Storage; Food Preparation; Hygiene; Household Furnishings; Miscellaneous (flower pots, ink bottles, etc.); Multifunctional; Pharmaceutical; Crucibles; Bottles; Kiln Related Artifacts; and Unidentifiable Fragments.

Note Field

This field is used to record non-standardized, artifact-specific information which is not included in any of the other codes.

2. Diagnostic Glass Methods

The glass assemblage from the Compton Site was broken down, for analytic purposes, into functionally distinct groupings based on "Bottle" and "Table" use categories. Window glass, considered more functionally inclusive under an architectural group of artifacts, was subsumed for analysis under Small Finds.

Identification and tabulation of the glass under this section proceeded unit by unit according to a Stage II (Intensive) level of analysis. In addition to Type/Subtype, Date, and Count designations, this primarily involved the recordation of select
descriptive attributes of the sherds (i.e., Color; Finish and/or Base Type, and Manufacturing Technique, etc.) as well as two sets of analytical data (Minimum Number of Vessels and Vessel Number).

The analysis utilized the typology and attribute list designed by LBA for all its projects. In addition to catalog and provenience information, a total of fourteen (14) fields of discrete glass data were available for recording on the computer data entry sheets. A brief description of coding procedures follows.

Type/Subtype

Tabulation of the glass proceeded according to artifact codes determined by function (Type) and form (Subtype). Codes are alphanumeric, consisting of three letters and a two-digit number. The first letter, "G," standard for all codes, denotes the artifact as "Glass." The second letter denotes the general functional category in which the artifact falls: "B-Bottle" and "T-Table" glass. The third letter denotes specific function, i.e., "A-Alcohol" under the general "Bottle" heading and "X-Tableware Associated" under the general "Table" heading. The two-digit number completes the identification and denotes vessel form, i.e., "GBA 19 - Case Bottle" and "GTX01 - Prunt."

All artifacts identified as to specific function and form were coded as such regardless of the degree of fragmentation. The specific vessel part(s) encountered are inferred by the coding of the appropriate field(s), i.e., "Base" and "Finish." Whole and fragmented bases, finishes, rims, and body sherds for which specific functional forms could not be identified were accommodated under "Unidentified" and "Miscellaneous" categories.

Count

This is simply the number of sherds in any category.

Begin Date/End Date

Dating of the glass assemblage proceeded according to established diagnostic criteria. These criteria, utilized either singly or in combination, include various technological aspects of glass manufacture such as finish treatments. When applicable, both a beginning and end date of manufacture were recorded. Sources used for dating include Noel Hume (1961, 1972). Additional sources consulted include Drahotova (1983), McKearin and Wilson (1978), and Mehlman (1983).

Color

In general, color was assigned to glass sherds purely for descriptive purposes and is broadly defined for this collection. All shades of olive green, for example, are coded under "Light Olive/Dark Olive Green."
Finish

Finish types in the collection fell within the One-Part (100s) and Two-Part (200s) categories. Coded descriptions relate, for the most part, to the shape (in side profile) of the element(s) comprising each finish.

Base

Base types in the collection refer to the marks on the basal surfaces of the bottles, indicating, for the most part, the mode of their finish manufacture. Base fragments which could not be associated with a diagnostic piece were coded "99-Unidentified."

Manufacturing Technique

Manufacturing technique refers to the distinctive mold seams and markings (or lack of them) found on the bodies of completed glassware. Code "99 - Unidentified" was used to denote a totally unidentifiable manufacturing technique.

Motif

Motif codes assigned to the collection refer to the general decorative patterns evidenced.

Minimum Number of Vessels (MNV)

For the majority of glass forms (i.e., case bottles), MNVs were primarily defined by counting the number of bases in the assemblage. All whole and fragmented bases were set aside as each provenience was prepared for tabulation. Fragments were grouped by form, color, and pontil type (when evidenced), and mended to the fullest extent possible within each provenience. Cross-mends were first made between all proveniences in a given excavation unit and then systematically attempted between proveniences of select other units. This was done to decrease the chance of multiple counting of vessels that may have had their bases crossing more than one level or stratum in a given unit and/or more than one level or stratum between units. An MNV of "one" was assigned to each whole base. As a general rule, single fragments and those mending to form only a partial base were assigned an MNV of "one" if the pontil type could be discerned and/or a 50 percent or above level of completeness was achieved. When a base cross-mended between two or more proveniences, the MNV was assigned to the stratum and level containing the greatest number of fragments or, when the number of fragments was equal, to the stratigraphically higher provenience.

MNV counts were variously scored with finishes, rims, and/or body sherds on the basis of unique type, motif/pattern, or color, etc. The procedures described above for mending, cross-mending, and
MNV provenience assignment remained constant, regardless of the various criteria used.

Vessel Number

Vessel numbers were generated in conjunction with assignment of MNVs. All vessels assigned an MNV received a vessel number (consecutive throughout the site). Where cross-mends occurred between two or more proveniences, their locations were noted and the mending sherds were given the same vessel number. This enabled the computer to track all mending sherds. An "A" designation recorded after the vessel number indicates probable association with that vessel within the provenience in which the MNV was assigned; a "B" designation indicates probable association outside the provenience of the assigned MNV.

Comments

Comment codes were utilized at the discretion of individual analysts, to convey additional descriptive or explanatory data not covered in the standard coded fields. These include, for example, "Dated by Association."

Note Field

This field was used to record non-standardized, artifact-specific information.

3. Faunal Methods

The faunal material the Compton Site received a Stage I level of analysis using the coding system created by the LBA Cultural Resource Group. This system allows for identification by species and element, and by bone modifications. Group and class are assigned to each species, allowing for pattern analysis.

Type/Subtype

The Type/Subtype code consists of a three-letter, two-integer field. The first letter is always "Z" for Faunal; the second letter denotes class, e.g., "M" for Mammal; the third letter distinguishes groups within a class, e.g., "D" for Domestic. The Subtype denotes species.

Count

Each bone or bone fragment received a count of one.

Element

The skeletal element was identified.
Part Present
How much and which part of an element present was recorded.

Age/Epiphysial Fusion
Indicators of age, such as unfused diaphyses and unerupted teeth, were recorded when present.

Butchering
Any marks attributable to butchering were recorded. Distinctions were made between primary and secondary marks.

Cuts
Elements deliberately butchered to a specific shape, such as steakbones, were identified by cut.

Burning
Any evidence of burning was recorded.

Gnawing
Gnaw marks were recorded and an attempt was made to distinguish between rodent and canine teeth marks.

Weathering
Weathering was noted.

Comments
Standard comments were used for noting additional data present but not accommodated in the other fields of information. For example, the comment "69" means Mendable and is useful in doing adjusted bone counts.

Note Field
In addition to standard comments, other bits of information were noted here that were not accounted for in the variable columns.

4. Small Finds Methods

Architectural and Small Finds materials from the Compton Site received the standard Stage I level of analysis, using the coding system created by the LBA Cultural Resource Group based on the South/Noel Hume typology (South 1977).
The Stage I coding system allows for a maximum of 10 fields of information for each artifact. Each artifact was identified by its group and class and its material type, and was given a count. For certain artifact types additional descriptive information was given, such as weight and color. The remaining fields of information were used only when additional information could be provided by the artifact.

Type/Subtype

Type/Subtype consists of a three-letter, two-integer field. The type denotes 1) artifact type, in this case "S" for Smallfinds/Architectural; 2) Group, e.g., "A" for Architecture, "D" for Kitchen; 3) Class, e.g., "E" for Electrical. The Subtype denotes a specific artifact type.

Count

Count was given for all artifacts of a specific group and class which shared the same modifiers within a given provenience.

Weight

The brick, mortar, and wattle and daub were weighed.

Begin Date/End Date

Dates for certain artifacts were generated automatically by the Type/Subtype. In some cases dates were written in when a range for an artifact could be determined. These dates were based on diagnostic attributes, for example, the style and material type of the trigger guard.

Material

The material composition was described for each artifact.

Characteristic

A modifier was used to best describe the form or manufacturing technique of each artifact. If no diagnostic attribute was evident, the artifact was described as being whole or fragmented.

Decoration

Any characteristic not related to the form or manufacture of an artifact but which was purely decorative was described.

Color

Color was recorded for the brick, to distinguish between different types, and for other artifacts as appropriate.
Maker's Mark

No maker's marks were present in the Compton assemblage.

Comments

This field was used to make additional comments about the artifacts, for example, evidence of burning, which could not be accommodated elsewhere.

Note Field

In addition to standard comments other bits of information were noted here not accounted for in the variable columns.

5. Tobacco Pipe Methods

The tobacco pipes were also coded using a computer coding system developed by LBA. They were coded separately from the other Small Finds.

Type/Subtype

The first two letters of the Type code are "PT" (Pipes-Tobacco). The third letter indicates either a Stem ("S"), and English Bowl ("E"), or a Dutch Bowl ("D"). The Subtype numbers designate specific bowl or stem shapes.

Maker's Mark/Decoration

The four-number code used in this field designates specific maker's marks and decorative motifs. For instance, "2103" indicates an "EB" (Edward Bird) mark.

Use

This code is used to indicate the amount of discoloration from smoking, the presence of bite marks on the stem, etc.

Bore Diameter

The bore diameters of stems were measured in sixty-fourths of an inch, using standard drill bits. Measurements of pipes in the Compton assemblage ranged from 6/64ths to 12/64ths. This measurement was recorded simply as the numerator (for example, "6" = 6/64).

6. Prehistoric Artifacts

Analysis of the prehistoric lithics was carried out in a fashion similar to that of the historic artifacts, in that codes were used to enter data into a computerized data base. The data file
for prehistoric lithics includes a number of fields identical to those in the historic artifact data file (Type/Subtype, Count, and Weight and Comments).

Type/Subtype

The lithic assemblage was classified according to 1) major formal classes (bifacial tools, unifacial tools, cores, chunks, flakes, cobble tools, ground stone tools, and fire-cracked rock); 2) raw material; and 3) presence or absence of heat alteration. The three text characters of the Type field denote major artifact classes (for example, "LMC" is Lithic - Modified Core). The Subtype numbers denote raw materials (chert, flint, etc.).

Count and Weight

The lithics were both counted and weighed.

Category and Subcategory

These fields provide more detailed formal and functional classifications particular to the major implement classes. The presence or absence of cortex (Cortex Field) was recorded for all lithic items, as was the presence or absence of thermal alteration (Heat Field). All tools (bifaces, cores, and cobble tools) were measured (Length, Width, and Thickness Fields) with measurements recorded in millimeters.

Projectile points were sorted first according to general descriptive categories (side notched, stemmed, corner notched, triangular, etc.), with this information recorded in the Subcategory Field. Three edge morphology measurements were made for each projectile point: blade form (EDJPLAT); basal edge form (EDJPLAT2); and notch/shoulder form (EDJPLAT3). Edge angle measurements taken on the lateral blade margins were recorded to the nearest whole degree of arc in the FIELD1 and FIELD2 fields. Points were then assigned to a formally defined type, if possible, with the point type recorded in the Subcategory Field.

Cores, cobble tools, and generalized bifaces were further sorted according to the Category and Subcategory Field definitions. Up to three fields (Damage/Wear, Damage/Wear2, and Damage/Wear3) were available for coding edgewear or use damage exhibited on tool edges.

Flakes, which formed the major portion of the collection, were sorted and tabulated according to the following: raw material (Subtype); whole or broken (Condition/Breakage); presence/absence of thermal alteration (Heat); as well as the size categories.

The prehistoric ceramics were analyzed separately and the information was not entered into the computer data base. The sherds were broken down into two basic types, diagnostic and non-diagnostic. Diagnostic types were identifiable by ware and
date (for example, Potomac Creek - circa A.D. 1200 to 1700). Both nondiagnostic and diagnostic sherds were described in terms of several categories: Paste (including temper and texture); Color (using Munsell chart designations for exterior, core, and interior); Surface Treatment (exterior and interior); and Form (described as measurements, since only one reconstructible vessel was found).

C. DEFINITION AND ANALYSIS OF DEPOSITIONAL UNITS: PLOWZONE

1. Artifacts

Since plowzone assemblages, unlike features, should represent the entire length of occupation at a site, an analysis was undertaken of the topsoil excavation sample for the identification of the use of space around the buildings. Discrete middens in the plowzone were identified, following the washing of the artifacts, by first quantifying certain artifact classes for each of the 162 test units. These groups included pipe stems (6/64", 7/64", 8/64", 9/64" bore diameters), ceramics, bottle glass, nails, flint, and bone. The artifact counts were then plotted on the site map, as had been generally accomplished in the field, to guide the excavation by establishing where topsoil artifact concentrations occurred. Finally, mathematically interpreted contour intervals were drawn on the site map to highlight densities of the different types of artifacts.

Pipe stems, for which the stem hole diameters became smaller through time, were the only diagnostic chronological markers available to date the various deposits. Closely datable objects or their characteristics, such as pipe bowl shapes, pipe makers' marks, tin-glazed earthenware, table glass, bottle glass (King and Miller 1987) which have been used at other sites were not present in meaningful quantities in the plowzone assemblage at 18CV279. Due to the small sample size, 9/64ths inch and 8/64ths inch stem hole diameter pipes were paired as were 7/64ths and 6/64ths inch stems.

When plotted (Figure 10), the earlier sample (9/64", 8/64") was densest in two major areas: north of the cluster of buildings and between the pits in that location, and in an area that spans the space south and east of the house across the bottom half of the building cluster and between the pits to the east, west, and south. A third concentration may have been the result of the plowing out of the objects in pits 6/16/17 and it was thus not retained as an analytical unit.

The later pipe stem (7/64", 6/64") densities fell into the same general areas, but they encompassed more space in all three locations (Figure 11). This similar pattern for both time periods indicated that there was no discernible chronological change in the use of the yards. It must be noted, however, that the
FIGURE 10: 8/64” and 9/64” Bore Pipestems in Plowzone
FIGURE 11: 6/64" and 7/64" Bore Pipestems in Plowzone
highest concentration of later pipe stems appeared in the westernmost plowzone-sampled area, indicating that a small midden with no subsurface association was present there.

Ceramic densities in the plowzone units were next examined. They also were found to show the same three general clusters as the pipe stems of various stem hole diameters (Figure 12) and they corresponded to the oyster shell weight densities (Figure 13). Once the densities were mapped and highlighted by contouring, it was decided that the middens to be studied would encompass areas within which 10 or more ceramics were found per unit. This sample size was 4 ceramics per square foot in an area where the topsoil averaged 8 inches in depth. The map delineated a North Midden which filled the space north of the buildings and which lay between the northernmost pits, and an extensive South Midden which fell across the lower half of the site, occupying the open space southeast of the buildings and superimposing Structure 4. Two small middens within the South Midden, containing 20 or more ceramic sherds per unit, were observed in the yard between the house and Pit 8 (West Midden) and between Structures 3 and 4 (East Midden).

All units and partial units which fell within the boundaries of each of the four middens were next recorded so that the content of each midden could be measured through the presence of diagnostic classes of artifacts which would reflect activities (pipe stems, flint), dietary refuse (ceramics, bottle glass, bone), and architectural debris (nail heads). Differences between the middens in the percentages of the classes could indicate varying uses of space across the site.

The results of this analysis demonstrated no significant differences in the percentages (as opposed to numbers because of different sample sizes) of artifact classes between the middens, with one exception (Table 1). Over three times the amount of bone was recorded in the North Midden as compared to the other middens. This trend seems to indicate that more dietary waste was discarded north of the buildings.

A final artifact study of the middens involved a closer examination of the ceramics in order to see if chronological or functional differences could be discerned. Also, the ceramics were tabulated by ware types in order to compare the types present in the plowzone to those in the features (Table 2).

The sherds are very fragmentary, as is the rule with artifacts from plowzones, and their small size made identification more difficult. As a result, ware types such as Dutch Coarse Redwares and Morgan Jones are under-represented in the plowzone tabulation, since redware sherds were tabulated simply as Miscellaneous Redwares unless sherds were large enough to specifically identify. In spite of this, it was apparent that there was a greater variety of ware types present in the plowzone than in the features.
FIGURE 12: Plowzone Ceramics

SCALE IN FEET
CONTOUR INTERVAL 0.5 FEET
A.H.W.M.
FIGURE 13: Plowzone Oyster Shell by Weight
TABLE 1
PLOWZONE ARTIFACTS

<table>
<thead>
<tr>
<th>ARTIFACTS</th>
<th>NORTH MIDDEN</th>
<th></th>
<th>SOUTH MIDDEN</th>
<th></th>
<th>WEST MIDDEN</th>
<th></th>
<th>EAST MIDDEN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. for All Units</td>
<td>Percent for All Units</td>
</tr>
<tr>
<td>Pipestems (all)</td>
<td>65</td>
<td>12.7</td>
<td>492</td>
<td>17.2</td>
<td>71</td>
<td>20.5</td>
<td>71</td>
<td>18.3</td>
</tr>
<tr>
<td>Broken Glass</td>
<td>19</td>
<td>3.7</td>
<td>74</td>
<td>2.6</td>
<td>5</td>
<td>1.4</td>
<td>9</td>
<td>2.3</td>
</tr>
<tr>
<td>Ceramics (historic)</td>
<td>192</td>
<td>37.6</td>
<td>1159</td>
<td>40.6</td>
<td>152</td>
<td>43.8</td>
<td>160</td>
<td>41.2</td>
</tr>
<tr>
<td>Bone</td>
<td>108</td>
<td>21.2</td>
<td>194</td>
<td>6.8</td>
<td>19</td>
<td>5.5</td>
<td>34</td>
<td>8.8</td>
</tr>
<tr>
<td>Nailheads</td>
<td>99</td>
<td>19.4</td>
<td>674</td>
<td>23.6</td>
<td>74</td>
<td>21.3</td>
<td>80</td>
<td>20.6</td>
</tr>
<tr>
<td>Flint (chert & flint)</td>
<td>27</td>
<td>5.3</td>
<td>252</td>
<td>8.8</td>
<td>26</td>
<td>7.5</td>
<td>34</td>
<td>8.8</td>
</tr>
<tr>
<td>Total</td>
<td>510</td>
<td>99.9</td>
<td>2845</td>
<td>99.6</td>
<td>347</td>
<td>100.0</td>
<td>388</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Morgan Jones</td>
<td>Misc. Red</td>
<td>Dutch Cem</td>
<td>N. Devon Gray Free</td>
<td>N. Devon W/Red Free</td>
<td>Faience</td>
<td>Majolica</td>
<td>N. Devon Plain Slip</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>EAST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>66 46.5</td>
<td>14 9.9</td>
<td>18 12.7</td>
<td>10 12.7</td>
<td>7 12.0</td>
<td>1 8.7</td>
<td>0</td>
</tr>
<tr>
<td>WEST</td>
<td>0</td>
<td>75 56.0</td>
<td>13 16.6</td>
<td>6 4.9</td>
<td>17 12.0</td>
<td>4 3.5</td>
<td>0 0</td>
<td>1</td>
</tr>
<tr>
<td>SOUTH</td>
<td>0</td>
<td>414 54.0</td>
<td>133 17.4</td>
<td>24 3.1</td>
<td>81 10.6</td>
<td>47 6.1</td>
<td>14 1.8</td>
<td>3 0.7</td>
</tr>
<tr>
<td>NORTH</td>
<td>2 8.7</td>
<td>79 45.1</td>
<td>14 8.0</td>
<td>16 9.1</td>
<td>27 12.6</td>
<td>19 10.9</td>
<td>3 2.9</td>
<td>3 1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2 8.7</td>
<td>654 53.6</td>
<td>177 14.8</td>
<td>64 5.3</td>
<td>133 11.8</td>
<td>87 7.2</td>
<td>20 1.7</td>
<td>8 0.7</td>
</tr>
<tr>
<td>PLUG ZONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7 8.7</td>
<td>217 29.8</td>
<td>425 56.7</td>
<td>98 6.6</td>
<td>34 5.2</td>
<td>35 5.5</td>
<td>45 4.3</td>
<td>8 0.8</td>
</tr>
<tr>
<td>FEATURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 lists the major ware types, first by the separate middens, then for the total plow zone, and, finally, for the combined features. Numbers of sherds and relative percentages differ: the plowzone has more sherds (1,206 -- but of course these are smaller sized); and the Miscellaneous Redware category is much larger in the plowzone. This category, as noted above, is inflated in the plowzone with redware types which could not be specifically identified. For example, the Dutch Coarse Earthenwares are apparently fewer in the plowzone, but this is at least partially because some Dutch sherds could not be positively identified. Other ware types which are probably also under-represented are North Devon Gravel-free, Morgan Jones, and Italian slipwares.

All earthenware types which were manufactured by the Dutch are included under the Dutch Coarse Earthenware category. These are Dutch Coarse Redwares, Dutch Red Slipwares, Bergen op Zoom Redwares, Green Glazed White Slipped Redwares, and Buff-Bodied Wares with Green and/or Yellow Glazes.

Buff-Bodied Slipware is present in the plowzone but not in the features. The seven sherds in the plowzone could come from one, or possibly two, hollow ware vessels. English Buff Slipware is generally not reported from North America before circa 1680 (Miller 1983:87), but there are some indications from New York sites that this type appears somewhat earlier (Paul Huey, personal communication). The Compton sherds are very fragmentary and their decoration cannot be determined, but one has remnants of slip dots and another has faint traces of narrow combed lines. These sherds are likely to be the latest ceramics at the site, and might represent post-abandonment activities.

A large number of the faience sherds from the plowzone, in particular from the large South Midden, have thin tin glaze on both surfaces. This glaze is much thinner than that on the faience sherds from the features, and all of these sherds probably come from one buff-bodied blue-decorated vessel whose shape cannot be determined but which was not a plate (based on the rim fragment in Cat. #s 82 and 88). This vessel appears to be scattered throughout the midden. It is possible that this vessel is early Dutch or English faience, but a similar thin glaze is often found on Iberian faience. Unfortunately, the vessel is too fragmentary to determine its origin.

Within the category, Miscellaneous Red earthenwares, there is a greater variety of ware types, in spite of the increased difficulty of identifying plowzone sherds. In the features, only "Earthenware #5" (defined on the basis of Chesapeake type specimens furnished by Julia King of the Patterson Park Museum, Maryland) was identified; but in the plowzone "Earthenware #s 2 and 4", as well as #5 and "chalky pasted ware," were identified (again based on type specimens). No vessel forms could be reconstructed.
Sherds from a distinctive but presently unidentifiable redware type were recovered from both the plowzone and the features. These sherds, which were given the motif modifier "503" (VAR 4) in the computer coded feature analysis, are buff bodied with a thin orange slip over the body and an orange-appearing glaze either on both surfaces or only on the interior. This ware is probably local, but does not match any of the type specimens or any written descriptions of Chesapeake redwares. One vessel, Vessel #22, was partially mendable to form the rim of a dish or bowl with a flat rim.

Saintonge sherds (identifiable by their particular body color and traces of brown and green-colored glaze) and Iberian jar sherds are subsumed in the "Other" category on Table 2. The Saintonge sherds most likely come from the vessel identified in Feature 3 (Vessel #39), and the Iberian olive/oil jar sherds probably also are part of the vessel (#32) in Feature 3. The sherds of Italian slipware from the plowzone probably come from Vessel #8 in Feature 8.

The "German Stoneware" category includes both Rhenish blue-decorated sherds and bellarmine/tiger ware sherds with thick brown mottling. One of the blue-decorated sherds, from Cat. #115 in the West Midden, has a fragment of a sprigged medallion. What is left of this medallion resembles city coats of arms which were sometimes used to decorate Rhenish jugs. Not enough was left to enable the specific coat of arms to be identified, but the Arms of Amsterdam have been found on New York State archaeologically recovered jugs. None of the brown mottled sherds had any portion of sprigged bellarmine faces or medallions.

In sum, the examination of ceramics in the middens revealed no major chronological or functional differences between the four middens. The study did identify a greater variety of ware types in the plowzone as compared to the features, particularly within the red earthenwares. It was not possible to address the functional differences in the vessels in the plowzone, however, due to the fragmentary nature of the sample which made it impossible to reliably reconstruct vessel forms. Finally, as expected, sherds that may represent post-occupational activities were found during the analysis.

2. Soil Chemicals

The 57 soil samples taken out of the units were analyzed by the University of Maryland Agronomy Department Soil Testing Laboratory, College Park, Maryland, for the presence of soil chemicals which might assist in clarifying the function of the buildings and yards. Elsewhere in the Chesapeake, the combination of artifact densities and soil chemical concentrations (Keeler 1978:72) has provided evidence for waste disposal areas and routes of communication on homelots.
Parts per million (ppm) were recorded for phosphate (P2O5), potash (K2O), calcium (Ca), and magnesium (Mg). These values were plotted as points on the site map and, as was done for the artifacts, mathematically interpreted contour lines were again constructed to emphasize relative densities of the soil chemicals.

The highest readings for phosphate (250+ ppm) were within Structure 4 (Figure 14). The concentrations (150+ ppm) continue beyond the building, particularly within the early animal pen (Fence 1) from a point south of Pits 6/16/17 to locations west of Structure 4. Separate concentrations are also located around Feature 8 and north of Structure 2. Interestingly, the contour representing 50+ ppm seems to mark the occupied area which encompasses all the buildings, yards, and the outside ring of refuse pits.

In sum, phosphate appears to be a good indicator that the function of Structure 4 was as an animal barn and that Fence 1 was an animal pen because, in either case, contained animals would produce organic wastes and high phosphate levels (Keeler 1978: 65). The noticeable absence of significant levels of phosphate in the vicinity of Structure 5 suggests that this building was a granary or corn house rather than a hen or poultry house which would have left high amounts of animal waste marked by the presence of this chemical. Finally, the densities of phosphate seem to clearly mark the perimeter of 18CV279. This chemical would thus appear to be a useful measure for planning excavations.

Potash occurred in the highest densities in the yard between Structures 4 and 5 (Figure 15). A high (125 ppm) reading just east of Structure 5 is probably a reflection of the activities around a nearby cooking pit (Features 2) which was filled with alternating layers of wood ash. High readings also overlie Pits 6/16/17, which contained fireplace daub, suggesting that nearby hearth sweepings were deposited in this location. Finally, the elevated concentrations (75 ppm) of potash 10 feet north and 10 feet east of Structure 2 suggest that this building was used as a smoke or meat house which would have also produced quantities of wood ash.

High readings (1500+ ppm) of calcium (Figure 16) were noted in the North Midden between the cluster of buildings and the northernmost pits. Elevated readings also occurred over Pit 20; Pit 8, where the bulk of the oyster shell was recovered from subsurface features; and the area stretching over the south and west halves of Structure 4 to the vicinity of Fence 2 where 2000+ ppm were recorded.

In general, the density of calcium in the plowzone at 1000+ ppm mirrors the extent of the surface scatter of oyster shells (see Figure 6) and the areas where at least one pound of oyster shells was found per 2.5 foot unit (see Figure 13). Like the
FIGURE 14: Phosphate Distribution
FIGURE 15: Potash Distribution
weighed shell, calcium ppm indicated the location of the two large midden areas. The calcium pattern did not, however, show the location of oyster shell paving, and thus routes of communication, as it has on other sites (Keeler 1978:70).

The highest accumulation (175+ ppm) of magnesium was found at the south end of the large enclosure (Fence 1), south of the open area between the building cluster and Feature 8 (Figure 17) where the strongest concentrations of calcium were also found. Although magnesium is expected to match calcium locations (Custer et al. 1986), the aforementioned high reading was the only part of the site where the two chemical patterns closely overlapped. They appear to mark a waste disposal area not evident by the presence of plowzone middens or subsurface features. Otherwise, magnesium shows the same trends the other soil chemicals and plowzone artifacts delineate: an extensive south midden and a smaller north midden.

In summary, the soil chemicals were useful in establishing the perimeter within which the site occupation occurred. Further, the chemicals assisted in clarifying the functions of two nondescript structures, where no other information was available.

D. DEFINITION AND ANALYSIS OF DEPOSITIONAL UNITS: FEATURES

As with the plowzone material, all artifacts from features were inventoried and studied; however, certain portions of the site received additional analysis. A narrative description is presented below for each artifact class (e.g., ceramics, glass, etc.). Following each assemblage description, there is a summary of the comparison which was made between the contents of pits or groups of pits. It was thought that these studies might show chronological or functional differences in the remains they contained.

Specifically, the three subsurface depositional units chosen were as follows: Feature 8, Features 6/16/17 collectively, and Feature 3. The faunal comparative study units were expanded to include Features 14/18, Features 5/8/9/21, Features 6/16/17, Feature 3, and Features 7/19 which ensured that the bone deposits in five discrete areas around the site would be examined.

1. Ceramics
 a. Introduction

The ceramic collection from the Compton Site includes English, Dutch, and locally-made earthenwares, along with smaller numbers of German stonewares and Iberian and Italian earthenwares. In general, the assemblage is similar to contemporary Maryland sites (King, personal communication 1988; Miller 1983; Pogue 1987), but there are more sherds that can be definitely iden-
FIGURE 17: Magnesium Distribution
tified as Dutch, based on their pastes and forms. The presence of Dutch ceramics on a mid-seventeenth-century site in Maryland is not unexpected, since the Dutch were engaged in extensive trade in the Chesapeake. Maryland's position as a proprietary colony resulted in greater freedom to trade with non-English merchants and the Dutch took full advantage of this opportunity (Wilcoxen 1986:23). The Dutch, from their base in their own colony of New Netherland, traded along the entire Eastern seaboard; their infringement on English trade was one of the reasons for the English conquest of New Netherland in 1664. There is evidence that Dutch trade with Maryland was virtually unrestricted, in spite of the English Navigation Laws, until the first Anglo-Dutch War in 1652 (Wilcoxen 1986:24). After 1652, trade was probably limited by the hostilities, and it was further reduced by the 1664 takeover of New Netherland. However, even though Dutch political power in North America was essentially ended in 1664, the Dutch continued limited trade with the English colonies until the end of the century (Ritchie 1976).

Table 3 lists all of the ceramic vessels recovered from Compton by their ware type and form. Ceramic vessels are represented by sherds in three categories: those that could be mended to form more than 25 percent of a vessel; those that cross-mended between levels; and those that were designated as MNVs (minimum number of vessels), based upon unique forms or decorations. The former two categories were assigned Vessel Numbers; the latter category were simply identified by a 1 in the MNV coding category. The British and British-American forms in Table 3 are based upon definitions in Beaudry et al. (1983) and the Dutch forms upon definitions in Janowitz, Morgan, and Rothschild (1985).

b. Analysis

Dutch vessel forms include pipkins (grapen), skillets (steelpannen), porringers (papkommen), bowls (kommen), and pitchers (kruiken) with distinctive handle and rim shapes (Figure 18; Plates 5-11) (Hurst, Neal, and van Beuningen 1986; Janowitz, Morgan, and Rothschild 1985). All of these forms are in the Compton assemblage. Dutch handles on hollow wares are either "flared-ears" or large, round loops with slightly up-turned tops (see Figure 18 and Plates 5 and 7). On skillets, handles are "celery-shaped" (see Plate 8). Rims on Dutch pipkins have a distinctive profile (see Plate 7), and skillets have a "folded-over" rim which is also easily identified (see Plate 9). Pitchers and smaller pipkins usually have a small, pushed-out pouring lip. Pipkins have three feet and either one or two handles.

The bodies of vessels with Dutch shapes are varied. Sherds with a bright, red-orange sandy paste, which leaves a stain when rubbed on a finger, have a light brown to greenish-brown glaze. These vessels may have been manufactured in the town of Bergen op Zoom which was a redware manufacturing center from the late Middle Ages to the nineteenth century (Baart, personal
TABLE 3

COMPTON CERAMIC VESSELS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Food Preparation</th>
<th>Food Service</th>
<th>Food Storage</th>
<th>General Food Rld.</th>
<th>Hygiene</th>
<th>Unident.</th>
<th>TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skillet</td>
<td>Pipken</td>
<td>Pan</td>
<td>Rect. Pan</td>
<td>Bowl</td>
<td>Pitcher</td>
<td>Dish</td>
</tr>
<tr>
<td>Buff Ether-Yellow gliz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buff Ether-Yellow/Brn gliz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Earthware-Brown gliz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Earthware-Dark Brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Ether-Orange Paste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch Erse Earthenware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergen op looo Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Ether-Slpd,Mo.Holl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Ether-Slpd Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Ether-Wht.Slp. Gr.glz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian Slipware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Red Earthenware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Devon-Gravel Templet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Devon-Gravel Free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Devon-Sliped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morgan Jones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Onge-Polychrone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delftware-Majolica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delftware-Faience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German Stoneware-Dellarmel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German Stoneware-Blue Dec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iberian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 18: 17th Century Dutch Vessel Profiles and Handles
PLATE 5: Dutch Green And Yellow Glazed Pitcher, Foot and Flared Handle
PLATE 6: Dutch Green and Yellow Glazed Pitcher, Profile
PLATE 7: Dutch Redware Pipkin with Characteristic Ear Handle
PLATE 8: Dutch Skillet with "Celery-Shaped" Handle
PLATE 10: Dutch Bowl. Interior Has Green Glaze Over White Slip
PLATE 11: Various Dutch Redware Sherds. Top Shard Is Probably North Holland Slipware
communication 1987). Other Dutch redwares have red to light brown fairly small-grained evenly colored bodies with few inclusions and clear to yellow-brown well-vitrified glazes. Another group of Dutch sherds have similar red bodies but are covered on the interior with a green glaze over a white slip. The rims of these vessels are unslipped and have a clear glaze into which some green has flowed. This ware is used for two vessels in the Compton assemblage, both bowls with wide rims (see Plate 10). Similar bowls, but with trailed slip-decorated rims, were manufactured in North Holland (Hurst, Neal, and Van Beuningen 1986:160). One rim sherd with trailed slip decoration was recovered from Feature 8; its form was unidentifiable but it is probably also of North Holland manufacture (see Plate 11).

One Dutch-made vessel, a pitcher, has a fine-grained buff body with yellow glaze on the interior and green glaze on the exterior (see Plates 5 and 6). This vessel has a "flared-ear" handle, a characteristic Dutch trait which identifies its source. Buff-bodied vessels with green and yellow glazes are often erroneously attributed to England, but kiln wasters from the Netherlands show that this ware was manufactured there (Wilcoxen 1986:56). Similar vessels were also made in England (Surrey Ware), but it is probable that a large percentage of the green and yellow vessels found in seventeenth-century North American contexts were Dutch trade goods, since the Dutch are known to have traded this ware to England and other areas (Wilcoxen 1986:56).

The skillets have light brown bodies with mustard-yellow to orange-yellow glazes (see Plates 8 and 9). There appear to be two slightly different forms of skillets in the assemblage: some have flat bases and no feet while others have slightly rounded bases and probably three feet (Hurst, Neal and Van Beuningen 1986:137). Two of the skillets, Vessels #19 and #20, have somewhat coarser bodies, and it is possible that they were manufactured in the New Netherlands. New Amsterdam (later New York City) had at least one potter by mid-century (Janowitz, Morgan, and Rothschild 1985:131; Ketchum 1987:5) and it is possible that Dutch-American local wares were among the products brought to the Chesapeake by the Dutch.

There are at least six skillets and between six and nine pipkins in the Compton assemblage (see Table 3). This is a considerable number of food preparation vessels, and most of these vessels show little wear. It is likely that wooden spoons, rather than metal spoons or knives, were the most common utensil used at the site, and wood leaves fewer use-marks than metal. Based upon the numbers of vessels and the lack of wear, however, it is probable that at least some of these earthenwares were goods stored for trade. Europeans traded metal cooking pots to the Indians, and Dutch food-preparation earthenware forms have been found on Indian sites within the former New Netherlands (Wilcoxen 1986:92), so it is possible that the inhabitants of Compton kept ceramics for trade with either their fellow colonists or the Indians. The most complete pipkin, however, is charred on the
exterior and shows scrape marks on its feet (although it has no interior stir marks), indicating that it was probably used at the site.

English-made North Devon gravel-tempered and gravel-free wares also appear in the Compton assemblage. The gravel-tempered types are food preparation vessels and they include a large, rectangular baking or drip pan (Plate 12). North Devon gravel-tempered wares were available in the Chesapeake by 1650, but were not common until after 1675 (Miller 1983:90). Miller also notes the presence of gravel-free sherds at St. Mary's City; he postulates that they might be temporally diagnostic, since they have been found in pre-1651 contexts but are rare on most Chesapeake sites (Miller 1983:90). At St. Mary's City, only 21 of the 193 North Devon sherds were gravel-free, but at the Compton Site 90 of the 152 North Devon sherds are gravel-free. This is perhaps an indication that the Compton Site might date before mid-century, but also could reflect the presence of household goods brought to the site by its settlers. The gravel-free forms include a bowl and two or three pitchers. The pitchers have fairly crude but distinctively finished bases which have been trimmed and pushed up (Plate 13). Eight other sherds resemble North Devon Sgraffitto ware but they have no sgraffitto decoration cut through their light slip. Similar sherds have been found at other Chesapeake sites (King, personal communication 1988), and this type was tentatively identified as North Devon Plain Slip-coated.

Other earthenwares in the assemblage include five sherds from Iberian storage jars (none with reconstructible forms) and nineteen sherds from at least one Italian slipware bowl (Plate 14). Italian slipware bowls, dishes, and costrels have been found in England, New England, and Virginia (Miller 1983:88) as well as in the Netherlands (Wilcoxen 1986:77) and could have been brought into the Chesapeake by Maryland's early settlers, Dutch merchants, or Venetian traders who also occasionally sailed into the Chesapeake (Wilcoxen 1986:77).

A fragmentary Saintonge Green and Brown vessel, a ceramic type rare on English or Dutch North American sites, was recovered from the Compton Site (Plate 15). Saintonge wares were manufactured in southwest France and they supplied northern Europe and Britain with colorful earthenwares (Hurst, Neal, and Van Beuningen 1986:76). Various Saintonge wares were made from the thirteenth to the eighteenth centuries (in the latter period especially for export to Canada), but the period of greatest distribution was apparently from the late middle ages to the early seventeenth century (Hurst, Neal, and Van Beuningen 1986:83). The partial handle with a pink to pink-buff body and brown and green stripes in a cream-colored glaze from the Compton Site is probably from a barrel costrel; a form fairly common in museum collections but rare in archaeological assemblages (Hurst, Neal, and Van Beuningen 1986:96). Such costrels date between 1550 and 1650, another indication of a relatively early ceramic assemblage.
PLATE 12: North Devon Gravel-Tempered Dripping or Baking Pan
PLATE 13: North Devon Gravel-Free Pitcher Base and Pushed-Out Spout
PLATE 14: North Italian Slipware Bowl
PLATE 15: Saintonge Green and Brown Barrel Costrel Handle
The only identifiable local redware, Morgan Jones, is dated by Miller (1983:90) to circa 1661 to 1680. A circa 1677 kiln attributed to Jones was excavated in Westmoreland County Virginia. Jones apparently moved to the Virginia side of the Potomac from St. Mary's City in 1669 (Kelso and Chappell 1974:53). It is thus probable that the Compton sherds date from his Maryland period. Seven sherds were identified as Morgan Jones, based upon type samples furnished by the Patterson Park Museum, Maryland. These sherds make up at least one handled vessel whose shape could not be identified, but which might be a pitcher, since this is the only handled form illustrated in Kelso and Chappell (1974:58).

Three hundred and forty-five (345) sherds out of a site total of nine hundred and thirty-four (934) sherds came from Dutch wares (Table 4). One hundred and fifty two (152) sherds were identified as North Devon gravel-tempered and gravel-free types. Two hundred and two (202) sherds were coded simply as redwares, either unglazed (17) or with various shades of brown glaze. At least some, and possibly the majority, of these redwares are locally made, but they have not as yet been identified through kiln excavations or other archaeological assemblages. Three vessels in particular are likely to be local. Vessel #5 (Plate 16, right) is a large pan, approximately 8 inches in diameter with an over-fired, fairly thick body with some kiln adhesions on the base, and a dark olive/brown glaze on the interior, with glaze drips on the exterior. Its rim profile is more complex than most pans and is possibly a distinctive trait. Vessel #7 (see Plate 16, upper left) is the bottom portion of a charred cooking vessel, or possibly a bowl, with kiln adhesions on the base and very pronounced interior turn rings. The vessel is also over-fired and has a muddy dark brown/green glaze. It is possible that the vessel is over-fired Morgan Jones since the base profile matches that of a small jug attributed to Jones (Kelso and Chappell 1974:Figure 8 #21). Over-fired Jones Virginia-made wares, however, have purple to gray bodies and dark purple to black glazes (Kelso and Chappell 1974:60) and the Compton base is larger than the illustrated jug. Vessel #33 (see Plate 16, lower left) has a paste which somewhat resembles gravel-free North Devon, and this vessel is either over-fired or has been burned. It has a dark green to yellow/brown glaze on the interior and over the rim. The rim is everted and this vessel was possibly a chamber pot, although a pan or a storage pot is more likely. All three vessels were recovered from Feature 8.

Tin-glazed majolicas and faiences were not very common in the assemblage: forty-five (45) majolica and thirty-five (35) faience sherds comprising at least eight vessels (see Table 3) were identified. Majolica has tin glaze on the face and lead glaze, which sometimes has small amounts of tin, on the reverse; faience carries tin glaze on all surfaces. Majolica is earlier and was produced in the Netherlands and in England in the late sixteenth
<table>
<thead>
<tr>
<th>WARE TYPES</th>
<th>NUMBER OF SHERDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unglazed Redwares</td>
<td>17</td>
</tr>
<tr>
<td>Redwares with Clear Glaze</td>
<td>4</td>
</tr>
<tr>
<td>Redwares with Yellow-Brown Glaze</td>
<td>156</td>
</tr>
<tr>
<td>Redwares with Dark Brown Glaze</td>
<td>19</td>
</tr>
<tr>
<td>Redwares with Green/Ginger Glaze</td>
<td>6</td>
</tr>
<tr>
<td>Redwares - Other</td>
<td>6</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>208</td>
</tr>
<tr>
<td>North Devon with Gravel</td>
<td>54</td>
</tr>
<tr>
<td>North Devon Gravel-Free</td>
<td>90</td>
</tr>
<tr>
<td>North Devon Plain Slipped</td>
<td>8</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>152</td>
</tr>
<tr>
<td>Dutch Coarse Redwares</td>
<td>219</td>
</tr>
<tr>
<td>Bergen Op Zoom</td>
<td>51</td>
</tr>
<tr>
<td>Dutch Slip Trailed</td>
<td>12</td>
</tr>
<tr>
<td>Green Glazed White Slip</td>
<td>75</td>
</tr>
<tr>
<td>Buff with Green and Yellow Glaze</td>
<td>76</td>
</tr>
<tr>
<td>Buff with Yellow Glaze</td>
<td>4</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>437</td>
</tr>
<tr>
<td>Morgan Jones Ware</td>
<td>7</td>
</tr>
<tr>
<td>Iberian Storage Jars</td>
<td>5</td>
</tr>
<tr>
<td>Italian Slipware</td>
<td>19</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>31</td>
</tr>
<tr>
<td>Rhenish Stoneware</td>
<td>22</td>
</tr>
<tr>
<td>Bellarmine/Tiger Ware</td>
<td>4</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>26</td>
</tr>
<tr>
<td>Faience</td>
<td>35</td>
</tr>
<tr>
<td>Majolica</td>
<td>45</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>80</td>
</tr>
<tr>
<td>TOTAL SHERDS</td>
<td>934</td>
</tr>
</tbody>
</table>
PLATE 16: Various Earthenwares, Probably Local
and seventeenth centuries. Faience production in Northern Europe began about 1640 and replaced majolica by 1675 at the latest (Wilcoxen 1986:57-71). The faience sherds from this collection were more reconstructible than the majolica, and at least five plates, one possibly a shallow bowl or klapmuts (Wilcoxen 1986:59) (Plate 17), a porringer, and an ointment pot (gallipot) are present. The majolica vessels are more fragmentary, and the four plates (see Table 3) might in fact be large charger/dishes (Plate 18). The presence of more majolica than faience, based on sherd counts, and its more fragmentary condition, possibly also indicate a relatively early occupation. The largest numbers of tin-glazed sherds were found in the Feature 6/16/17 area.

At least one German stoneware jug with mottled brown glaze is represented in the collection. This fragmentary base is probably from a bellarmine but no body sherds were recovered. At least two other German stoneware jugs and one unidentifiable vessel, all with incising and blue decoration on fine gray bodies, are also present. The blue-decorated vessels are fragmentary and their designs could not be dated, nor could their shapes be reconstructed.

The place of manufacture of two other vessels has not been determined, but they are probably Dutch or Dutch-American. One (Plate 19) has a fairly crude red body and trailed slip decoration in a style that resembles North Holland slipwares. This vessel is a small, fairly shallow bowl. The other vessel, another small bowl or possibly a saucer (Plate 20), has an orange body which is similar to the skillets. It is possibly a Dutch bakje in an unusual shape. (Bakjes are small handled bowls for food consumption.)

c. Intra-site Summary

The assemblage in general was rather fragmentary: only four vessels were more than 50 percent complete and most were less than 25 percent complete. Cross-mending between features was minimal, with only one mend (Vessel #9) between Feature 18, Level 1, and Feature 14, Level 1, and one mend (Vessel #25) between Feature 8, Level 1, and Feature 12, Level 1.

The three areas isolated for comparison (Feature 3, Feature 8, and Features 6/16/17) exhibited differences in their ceramic assemblages (Table 5 and Figures 19, 20, and 21). Feature 8 had the greatest number of sherds and vessels, a total of 38; Feature 3 had 13 vessels, and Features 6/16/17 had only 5. The vessels in Feature 8 were also somewhat more complete. Feature 8 had by far the largest amounts of Dutch and miscellaneous redwares, while Feature 3 had only small amounts of Dutch coarse earthenwares, and Features 6/16/17 had none at all. North Devon types were both relatively and absolutely most numerous in Feature 3. Faience was approximately equal in all three areas, but the greatest amounts of majolica were in Features 6/16/17. Thus, Feature 8 was characterized by Dutch coarse earthenwares.
PLATE 17: Blue on White Decorated Faience Shallow Bowl
PLATE 18: Blue on White Decorated Majolica Chargers
PLATE 19: Red Earthenware Bowl with Trailed Slip Decoration
PLATE 20: Orange-Bodied Earthenware Small Bowl, Probably Dutch
Comparison of Features 3, 8 and 6/16/17

Ceramic Sherds

<table>
<thead>
<tr>
<th>Ware Types</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misc. Redwares</td>
<td></td>
</tr>
<tr>
<td>No. Devon Types</td>
<td></td>
</tr>
<tr>
<td>Dutch Types</td>
<td></td>
</tr>
<tr>
<td>Types</td>
<td></td>
</tr>
<tr>
<td>Faience</td>
<td></td>
</tr>
<tr>
<td>Majolica</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5
FIGURE 19: Feature 8 Ceramics

MAJOLICA (1.1%)

DUTCH TYPES (57.9%)

MISC. REDWARES (29.7%)

NO. DEVON TYPES (9.2%)
FIGURE 20: Feature 3 Ceramics
FIGURE 21: Features 6/16/17 Ceramics

- Majolica (65.3%)
- Faience (22.4%)
- Misc. Redwares (6.1%)
- No. Devon Types (6.1%)
and miscellaneous redwares (see Figure 19), Feature 3 was dominated by North Devon wares (see Figure 20), and Features 6/16/17 showed larger quantities of tin-enamedled wares (see Figure 21).

Based upon the ceramic collection, Features 6/16/17 might be the earliest of these areas as majolicas are seldom found on post-1660 contexts in the Chesapeake (Miller 1983:87). The relatively large amount of majolica in this area may represent the tablewares brought to the site during its initial occupation. Features 3 and 8 are more difficult to place temporally, since the types overlap. However, the large amount of Dutch earthenwares and the greater number of all sherds in Feature 8 clearly separate it from Feature 3. The ceramics in Feature 8 are possibly the result of the deposition of vessels which had been stored for trade or later use and which were discarded when the site was abandoned. Feature 8 also has 21 sherds of German stoneware and 17 sherds of Italian slipware (not on the comparative tables and figures), but Feature 3 has none and Features 6/16/17 only two sherds of each of these wares. Feature 8 thus has the greatest number and variety of ceramics.

One final important point should be made concerning ceramic usage at the site. Although it was analyzed separately because it was made by Native Americans (see Appendix), a Potomac Creek cord-impressed vessel (A.D. 1200-1700) was recovered from Feature 3 (Plate 21). The fact that relatively large, mendable sherds were discovered in this historic feature and that this more fragile Indian ceramic did not show evidence of weathering, indicates that it was probably used and intentionally discarded by the seventeenth-century occupants of Compton. Since the vessel was discovered in layers of woodash containing small fragments of daub from the chimney's interior walls, it was most likely swept out of the fireplace, where it had been used, following breakage.

2. Glass

Aside from personal (beads) and architectural (window glass), the Compton glass assemblage contains beverage-related artifacts. The collection contains three different drinking vessels, one wine bottle, and 22 case bottles.

Plate 22 shows the three drinking vessel fragments. They include a colorless non-lead stemware sherd on which portions of the bowl and stem survive (see Plate 22, left). The artifact is not flint or lead glass and therefore does not post-date the site to 1676 when this metal was introduced (Noel Hume 1970:186). An unidentified fragment from a paneled drinking vessel was also discovered. This vessel is made of opaque white glass and is embellished with blue and red enameled decoration (see Plate 22, upper right). A third fragment is probably a decorative prunt
PLATE 21: Potomac Creek Vessel
PLATE 22: Drinking Vessel—Fragment
which appears amber in color. This irregularly shaped ornamentation is probably Facon de Venise or could be from a German drinking form.

The aforementioned drinking vessels cannot be definitely attributed to an Italian, Dutch, German, or English source, as glassmakers, particularly Venetians, moved throughout Europe to practice their craft (Mehlman 1983:61). The presence of an enameled drinking vessel, along with other finely decorated glassware, at Compton suggests that the occupants were of some means.

A single long-necked wine bottle (Plate 23, left) in the collection carries a wetted off lip above a rounded string rim, flattened on the top and bottom. Made of olive-green metal, this shape is the same as an example of the earliest form dated before 1652 (Noel Hume 1961:99, 102).

The remains of 22 thin-walled square or case bottles (bases) of olive-green metal were also recovered. With one exception, they are half or full pints and are finished with everted lips (see Plate 23, upper right). A larger vessel with everted lip is fitted with a threaded pewter collar (see Plate 23, lower right). The square shape of these wine or spirit bottles facilitated shipment in wooden cases and was convenient for traveling cases or liquor cabinets at home (McKearin and Wilson 1978:224, 225).

3. Small Finds

The major components of the small finds recovered from the Compton Site fall into the categories of architectural materials, clothing fasteners, utensils, arms, personal items, and furniture hardware. In general, the preservation of most of the artifacts was very good so that they could be readily identified.

a. Architectural Materials

Architectural materials from the Compton Site (Plates 24-28) include daub, brick, mortar, fasteners (nails), window leads, and door hardware (lock mechanisms). Used in the building of the chimney in Structure 1, the daub was tempered with straw and sand. Imprints of the straw as well as the lath frame or wattle remain on the surface of the daub fragments (see Plate 24). Additionally, traces of the plaster are present on several surfaces. Most of the material is a dull brown in color; however, a number of fragments are red where they were in direct contact with heat (Shaffer, personal communication 1988). The majority of the brick at the site was yellow rather than red. Most likely Dutch in origin, these bricks were probably used as ballast and later reused in construction. The yellow brick is low-fired, straw-tempered, and is extremely soft and porous, with large air pockets (see Plate 25). This form of brick was used for interior walls and chimney hearths (Becker 1977:114). The mortar found at Compton was primarily tempered with shell.
PLATE 23: Wine/Liquor and Case Bottle Finishes
PLATE 24: Left: Straw and Sand-Tempered Daub. Right: Shell-Tempered Mortar
PLATE 25: Yellow Bricks, Probably Dutch
PLATE 26: Architectural Hardware: Door Lock Mechanisms—Banbury Lock, Latch, Sliding Bolt; Handwrought Nails
PLATE 27: Soldered Leads. Right: Profile View Showing Small Glass Fragment Still in Place
PLATE 28: Stocklocks or Banbury Locks. Right: Tumbler Device with Wood Fragments Still Attached
There was an abundance of handwrought rosehead nails, some with flattened, spoon-shaped tips (see Plate 26). They were generally in a good state of preservation and many were blued as a result of having been exposed to fire.

Six pieces of window lead originated from Features 8, 14, and 17 in addition to the plowzone. Their channels were opened in the hope that they might bear maker's marks and/or dates of manufacture; however, no discernible marks were present. Two fragments have solder points where leads crisscrossed bringing four diamond-shaped panes together (see Plate 27). The leads appear to have been milled in the same vice, as hatchmarks are consistent from one lead to the other. The discovery of leads at Compton is significant because they indicate the presence of windows. Windows are a good indicator of status as they were affordable only by those of some means.

One of the most interesting Compton assemblages was the architectural hardware. This group included a variety of lock mechanisms, bolt actions, and a hinge. There were two stock-locks (see Plate 28), also known as Banbury lock mechanisms (Noel Hume 1970:243-252), which would have been used on exterior doors. Recovered in Feature 8, one is a complete plate stock-lock while the other is fragmentary with surviving pieces consisting of the internal lock mechanism and the ward and tumbler. Feature 8 also contained a latch lock bar, a heavy, sturdy piece of hardware, which measured 6 inches in length. In general, the lock mechanisms were concentrated in Feature 8; however, a large sliding bolt was recovered in Feature 17.

b. Clothing

Clothing artifacts from Compton include fasteners such as hooks and eyes, a metal mesh band, pins, and sewing-related items such as scissors (Plates 29 and 30). With one exception, the clothing hooks and eyes recovered from Features 5, 8, 18 were made of iron. They were formed of bent wire curled at the ends where they attached to the fabric. A single eye was made of brass, the more common material used for these items (Noel Hume 1970:255). The size of the hooks varied from 1 1/2 inches to 3/4 inches in length and the larger sized artifact must have held in place a large clothing item. A band of metal mesh found in Feature 8 is one inch wide and is made of copper alloy links which appear to have been silver-plated. Under microscopic examination the metal looked to have traces of silver plating (Gary McGowan, personal communication) (see Plate 29). It was made by first knitting strips which were then fastened to each other by coils. Its exact function is undetermined, but it appears to have been used as a decorative element on clothing. Finally, there are 51 brass pins with wrapped heads which may have been plated, concentrated in Feature 8.
PLATE 29: Knitted and Coiled Metal Mesh, Copper Plated with Silver
PLATE 30: Clothing Fasteners and Sewing-Related Artifacts
Sewing-related items include two pairs of scissors and a thimble. The scissors resemble illustrated examples dating to the mid-seventeenth century (Noel Hume 1970:268). The large pair measures 5 1/2 inches in length while the smaller is approximately 4 inches long (see Plate 30). A brass thimble also came from the plowzone. Measuring 7/8 inch in height, it is banded so that there are two discrete dimpled areas for pushing needles: one forms a design around the shaft, the other is restricted to the tip.

c. Utensils

Utensils consist of two iron knife blades and 2 bone knife handles (Plate 31). The knives are both made in the same fashion, with a simple haft bar construction. One has a blued finish, with little corrosion, and the blade has a width of 5/8 inch. The other blade is in a poor state of preservation and it measures 1/2 inch in width. Both bone handles are bulbous and carry no decoration.

d. Arms

The arms group consists of gunflints and flint by-products, lead sprue, lead shot, and a wheel lock trigger guard (Plate 32). The gunflints varied in size and shape. Most were made of black flint imported from Europe and several were of the Thames River type taupe flint. There also were flint knapping by-products which indicates that the gunflints were at least repaired at the site if not made there.

An unfired musket ball and smaller game shot were found in Features 5 and 18. The trigger guard recovered from Feature 5 is from a wheel-lock musket of a style dated 1620-1650 (Peterson 1956:19). Made of iron, it has an ogee curve shape with a concave well for the fingers. According to Bedford (1971:105-110), muskets carrying iron furniture were military issue.

e. Personal

This group consisted of two glass beads, a brass spur, and a fine bone tooth comb (Plate 33). A millefiori bead, discovered in Feature 17, is of a type known as paternostrums which could be Italian or Dutch. Made of red glass with alternating blue and white horizontal stripes, it measures 1/2 inch in length. The other bead, a tiny one made of red glass, is of the type used for beaded clothing.

A brass spur, with either a gold wash or gold leaf was recovered from Feature 3. This spur has a large rowel terminating in a figure eight and is similar in style to the seventeenth-century type described by Noel Hume (1970:243). Spurs found on sites from the first half of the seventeenth century were usually made of iron (Noel Hume 1970:243), which suggests that the brass
PLATE 31: Ferrous Metal Knives with Bone Handles. The Top Blade Is Blued through Exposure to Heat
PLATE 32: Iron Trigger Guard from a Wheel-Lock Musket, Gunflints, and Shot
PLATE 33: Beardcomb, Millefiori Bead, Gold-Coated Brass Spur
example from Compton was owned by an individual of a higher status. The presence of the spur in addition to the discovery of a horse molar indicate that a horse was probably kept at the site.

A bone comb was recovered in Feature 18. It measures 1 7/8 inches x 1 3/8 inches and has two different tooth sizes. Head combs tended to be rectangular while beard combs were more square, thus indicating that the Compton example is probably a beard comb (Noel Hume 1970:174-175).

f. Furniture Hardware

Furniture hardware included a brass upholstery tack from Feature 3 and iron chest hardware from Feature 8 (Plate 34). The furniture tack measures 1/2 inch in length and is decorative as it carries a molded floral shape. The chest lock hardware is in two shapes: a heart-shaped hasp with a keyhole and a trowel-shaped hasp without keyhole.

g. Summary

Several items in the architectural materials, clothing, personal, and possibly furniture hardware categories of the small finds seem to suggest that the occupants of 18CV279 were of some means. Leaded windows were uncommon and tended to indicate wealthier individuals (Outlaw 1989). The presence of the intricate, silver-plated metal band probably used to embellish clothing and the brass spur with gold wash or gold leaf indicates that prominence was displayed in attire as well. The decorative furniture tack may also be an indicator of wealth in the form of the dwelling's furnishings.

The small finds support the Dutch trade evident in the ceramic assemblage by the presence of Dutch brick, a bead which, if not Dutch, was most likely obtained through trade with the Dutch, and the scissors (Mouer 1989). Finally, there was a noticeable absence of carpentry and agricultural tools at 18CV279. This situation, combined with the presence of a variety of Dutch and contemporary Indian materials, may indicate that the occupation of the inhabitants was mainly geared to trade, perhaps as factors, rather than farming.

4. Pipes

a. Introduction

The pipes discarded at Compton in the seventeenth century were European, local, and Indian made. The European pipes, of white ball clay (Plate 35) were by far the most numerous and they carried makers' marks (Plates 36, 37, and 38) which provided a date range (see Section E, Dating, below) and place of manufacture. Local pipes (Plate 39) imitating the European forms
PLATE 34: Chest Lock Hardware—Heart-Shaped Hasp with Keyhole and Trowel-Shaped Hasp
PLATE 35: Datable European Pipes:

a. PTE39 (1610-1640)
b. Noel Hume No. 4 (1620-1660)
c. PTE35 (1620-1660)
d. 1390 (1620-1665?)
e. PTE30 (1620-1665)
f. PTD01 (1625-1700)
g. PTD20 (1625-1700)
h. 2103 (1630-1684)
i. “PE” (1649-1696)
j. PTE38 (1651-1670)
PLATE 36: Flower Hunt (1651-1672)
PLATE 37: P.E. - Philip Edwards (1649-1690)
PLATE 38: E B - Edward Bird (1630- circa 1684)
PLATE 39: Locally and Indian Made Pipes. Top Row, left and center, Henry Bowl Type I, Right, Henry Bowl Type H; Center Row, dentates running deer Motif; Bottom Row, left, unidentified dentates, Right, unidentified Indian made.
in brown clay, were probably made at a nearby plantation (Outlaw 1989). The Indian-made pipes (see Plate 39) were contemporary with the historic occupation but they carried traditional Native American motifs, such as running deer, and are of a type found throughout the Chesapeake in seventeenth-century contexts.

The most heavily decorated European pipe is probably Dutch and dates to circa 1640-1665 based upon the bowl shape. It carries raised decoration across the entire face of the bowl (Plates 40 and 41) depicting a pikeman in body armor and a crowned woman in flowing robes, possibly Minerva, as well as two dogs and a series of tulips. The pikeman is also shown with helmet (cabasset?), pike, and sword. Pipes carrying this motif have been found at St. Mary's City, Maryland (Miller, personal communication 1988) but also as far north as Permaquid, Maine (Camp 1967:11).

Pipe stems and bowls both assisted in dating the period of occupation at Compton. The European pipe stems from the plowzone totaled 424 and they yielded a mean date of 1645.67 with no adjustment (since they were impossible to identify) for stems belonging to Dutch pipes, which could have introduced a bias in the date for the sample. A total of 1,234 stems from the subsurface features produced a mean date of 1630.1727 with Dutch pipes included. Without the Dutch pipes, a total count of 1,197 yielded a mean date of 1629.5098, a difference of only .6629. More useful in dating the site were the pipe makers' marks, which provided a terminus post quem of 1651 (Flower Hunt), and the pipe bowl styles which ranged from 1640-1660 (see Table 16 in Section E, Dating, below). What follows is a detailed discussion of the types and dates of the pipes found in the three feature areas for which ceramics were studied.

b. Comparative Study

Feature 3 contained a total of 25 pipes with 3 datable bowls: 1 Dutch elbow bowl, 1625-1700 (Rothschild, personal communication 1988), 9/64ths inch bore and burned; 1 European bowl, Oswald 4a (1961:61, Figure 2) and Noel Hume 8 (1970:303), 1640-1665, unmeasurable; 1 Flower Hunt bowl, 1651-1672, 7/64ths inch bore. All of these come from Level 1/eastside of the unit. There were a total of 17 measurable white clay pipe stems giving a mean date of 1643.7748 (Table 6). One measurable stem with a low oval heel and bore measurement of 7/64ths inch was noted as possibly being PTE30, but it could not definitely be identified as Dutch or European. The rest of the feature assemblage consisted of unidentifiable bowl shapes and unmeasurable stem fragments. Five of the stems were burned.

Features 6/16/17 contained a combined total of 49 pipes with 5 datable bowls: 3 Indian terra cotta bowls (a Henry H shape and an unidentified Henry dentate motif, 1640-1665; two had 10/64ths inch bores); 1 European bowl, Oswald 4a/Noel Hume 8 shape, 1640-1665, 7/64ths inch bore; 1 Dutch elbow bowl, 1625-1700, with 6/64ths inch bore. There was a combined total of 30 measurable
PLATE 40: Pikeman/Minerva - Pikeman View
Compton European Pipes

Features 3, 8, 6/16/17

Pipe Bore Measurement and Count

TABLE 6
white clay pipe stems giving a mean date of 1655.1027. One stem was decorated with a Dutch fleur-de-lis, 1625-1700 (Janowitz, personal communication 1989), with a bore of 8/64ths inch. The motif was a rouletted panel, with a single fleur-de-lis, repeated six times around the stem. A rouletted wave appears below it.

The rest of the assemblage consisted of unidentifiable European pipe bowl shapes and an Indian measurable stem with a bore of 10/64ths inch. All of the local and Indian pipes and the Dutch bowl came from Feature 6, as did 40 percent, or 12, of the measurable stems. Feature 17 held 50 percent, or 15, of the stems, while 10 percent, or 3, came from Feature 16. The European bowl was in Feature 16 and Feature 17 contained the Dutch elbow bowl and the fleur-de-lis stem.

Feature 8 had a large sample, consisting of 1,448 pipes with 78 datable bowls: 37 Dutch EB's, Edward Bird 1630-1665 (McCashion 1979:67). Located on the low, roundish heel, the mark is an unspaced EB of raised letters with a squarish appearance and is surrounded by a raised dotted circle. It was suspected that the EB's were locally made copies of European forms because several examples had pinkish bodies and an unrefined appearance of the clay body. They were probably European, however, and were simply of a poorer quality due to the clay batch, the firing, or just a general manufacturing of poorer quality pipes (Huey, personal communication 1989). Another indicator of poor quality pipes is a trailing off of the rouletted rim (Huey, personal communication 1989) which several of the Compton bowls exhibit. Bore measurements for the EB's were as follows: 12 with 8/64ths inch and 25 with 7/64ths inch. Of the 27 Dutch elbow bowls, 4 measured 8/64ths inch, 12 were 9/64ths inch, and 12 were unmeasurable. There were 21 of the Oswald 4a/Noel Hume 8, 1640-1665 European bowls: 1 has a bore of 8/64ths inch, 12 have a bore of 9/64ths inch, and 7 are unmeasurable. Also, 12 of the bowls carry the pikeman/Minerva(?) design (see Plates 40 and 41) on the same bowl shape as the Oswald 4a/Noel Hume 8, 1640-1665. Of these, 9 have 9/64ths inch bores and 3 are unmeasurable. Two mendable stems with a low oval heel have a fleur-de-lis decoration. The fleur-de-lis is a single stamped leaf in a diamond repeated four times down the length of the stem, which has a bore diameter of 7/64ths inch. All of the European bowls have been used or are burned.

There are 2 Indian terra cotta bowls (Henry bowl shape C with dentate running deer motif, 1650-1684). One of the bowls carries traces of white slip in the dentate. Although Henry gives a date range of 1655-1665 for this bowl shape (Henry 1979:22), found in a garbage pit at the St. John's Site in St. Mary's City, Miller gives all terra cotta pipes a date range of 1640-1670 (Miller 1983:83).

There was a combined total of 1,162 measurable white clay tobacco stems, including the 37 Dutch EB's and Dutch elbows, which
yielded a mean date of 1628.8188. Calculations after the removal of the Dutch pipes yielded a mean date of 1629.12, a difference of only .302. Based upon the sample size of known Dutch pipes, which might bias the dating, the removal of such a small number has no major effect on the date calculations for this sample. Researchers (Buchanan and Heite 1971:42) have refined pipe stem samples by eliminating fragments that exhibited black firing clouds, pinkish discoloration, and granular inclusion. They believed that by doing so, they would eliminate American-made white pipes, cruder pipes from English centers outside the mainstream of pipe manufacture, and most of the Dutch pipes. Attempts to refine the date of the Compton collection by eliminating the same variables described above resulted in the removal of only a few more pipes stems along with the EB's and yet there was no significant change in the date. This result could be partially due to the fact that 65 percent, or 727, of the bores were 8/64ths inch, 14 percent, or 162, were 9/64ths inch, 20 percent, or 224, were 7/64ths inch, and 1 percent, or 12, were 6/64ths inch. To see a significant change in the mean date either the 7/64ths inch stems would have to increase in number or the 8/64ths inch stems would have to decrease.

Most of the pipes exhibited some type of use, such as wear, burning, or bite marks. One stem had a reworked mouthpiece.

c. Intra-site Summary

Based upon the pipe stem date for each area, Feature 8 was the earliest (1628.69), with the most number of pipe stems to support it (see Table 6). Features 6/16/17 had the latest mean date, 1655.10, while Feature 3 was dated 1643.77. The removal of Dutch pipes from the date calculations should normally produce an earlier date, but at Compton the reverse occurred in Feature 8. While extensive breakage of the stems into many pieces could have accounted for early dating, almost all the stems are nearly whole, suggesting that other factors are producing such an early mean date. Accuracy of the Binford formula for mean dating, according to Deetz, is unreliable and subject to being influenced by "more intensive habitation in an earlier or later period" (Deetz 1987:66). The resulting mean date would lean toward the time period when the site was more intensively occupied.

The Binford formula also gave an early date at the Na-57 Site in Florida (Jones 1976:43). From a sample of 255 stems, a mean date of 1709.97 was derived, but from other data the end date of the site was known to be "somewhere in the late nineteenth century." The early date resulted from the fact that the deposit received a heavy increment of debris in the late seventeenth century. It thus appears that during an intense occupation, or when a heavy deposit of debris occurs on a site, the mean date becomes more susceptible to being earlier or later than it should be. This seems to be the case with the mean date from Feature 8, where
there is a heavy concentration of 8/64ths inch bores. The deposit may represent one intense episode of habitation or a single major dumping of debris.

Features 3 and Feature area 6/16/17 appear to have dates closer to the actual occupation than Feature 8. Even though the sample size is extremely small, it should make no difference in the reliability of the mean date (Noel Hume 1970:301). The dates from the pipe bowls are within the range of the mean dates given and all three areas studied contain pipe bowls from the same general time range. Thus, the mean stem bore date is the only indicator of different depositions. When an extreme date is derived, such as occurred in Feature 8, it is probably the result of a single, specific activity as opposed to a slow, gradual deposition.

5. Faunal

Many things work against the zooarchaeologist's efforts to obtain a clear understanding of the faunal patterns in an assemblage, including taphonomic factors, recovery methods, and sample size. While most of the faunal material rested in neutral base soil which ensured good preservation, it exhibited post-occupational breakage which adversely affected the sample size and therefore the bone counts. The bone could be mended, both within proveniences and across proveniences; however, the limited scope of the project did not allow this.

Stage I analysis did not involve mending bone. Instead, each fragment received a count of one so that numbers tend to be over-inflated in general categories such as "medium mammal" and under-inflated for identified species. In a few cases where mends were obvious the count was adjusted. It was clear to the analyst that certain elements such as skulls and mandibles could be mended to produce nearly complete specimens. Other bone fragments, such as longbones fragments, while fragmented after deposition, had also clearly been cracked for bone marrow extraction before they were discarded. No signs of gnawing were present on any of the bone examined.

The bones were separated by species and size range categories (Table 7). They were further separated by element and coded for variables such as butcher marks, gnawing, and burning. General age indicators, such as unerupted teeth and epiphysial fusion of longbones, were also recorded. Most of the mammals identified were large domestics including cow, pig, and sheep/goat. The use of the term sheep/goat is necessary because in many cases it was not possible to distinguish between the two species. In cases where it was possible to separate the species, it was always goat, a finding which supports Miller's research which indicates sheep were not common in the Chesapeake until late in the seventeenth century (Miller 1984:231-232).
TABLE 7
Species List

Bird
- Domestic
 - Chicken - Gallus gallus domesticus

Mammal
- Domestic
 - Goat - Capra hircus
 - Sheep/Goat - Ovis/Capra
 - Pig - Sus scrofa
 - Cow - Bos taurus
 - Horse - Equus caballus
- Non-Domestic
 - Deer - Odocoileus virginianus
 - Opossum - Didelphis marsupialis
 - Mole - Talpidae sp.
 - Shrew - Soricidae sp.
 - Raccoon - Procyon lotor
- Other
 - Human - Homo sapiens sapiens

Fish
- Drum - Sciaenidae
- Yellow Perch - Perca flavens
- Sheepshead - Archosargus probatocephalus

Reptile
- Terrapene carolina

Crustacean
- Crab
Deer was the only large non-domestic mammal recovered. Other wild mammal species include raccoon and opossum. There is only one occurrence of a carnivore-gnawed bone. This coupled with the fact that the crushed remains were clearly from large mammals indicates that it is unlikely that small mammals were present but too fragmented to be identified. Field techniques are another area where a possible bias was introduced into the recovery rate. To check against a biased recovery toward large bones, the flotation samples were examined. The flotation samples did recover fish, bird, or reptile remains and there were no small mammal species. Therefore, the results showed that no species was recovered which had not already been identified in the other samples. Bird bones were somewhat ambiguous. With the exception of chicken, no bird species were identified, since the bone was too fragmented to identify by species or even element. One unexpected observation was the lack of phalanges. These are probably the densest bones in birds and most likely to survive, yet none were recovered from either the excavated or floated samples.

The faunal material from Compton provided an excellent opportunity to examine the subsistence activities in a frontier setting since it all dates to the third quarter of the seventeenth century. The faunal material includes mammal, bird, reptile, amphibian, crustacean, and mollusc and represents dietary as well as butchering remains. Research areas focused on topics dealing with: 1) available wildlife resources and seasonal subsistence strategies; 2) animal husbandry; 3) butchering practices; 4) diet; and 5) the identification of activity areas across the site.

Subsistence strategies are based on complex decisions involving time, level of effort, and availability of resources. The distribution of bone across the site within features was believed to be the result of chronological deposition and activity related to factors such as butchering patterns and dietary refuse. In order to examine these activities, five areas of the site were chosen for study. The areas were: Feature 3; Features 6/16/17; Features 5/8/9/21; Features 7/19; and Features 14/18. Several tables and graphs which follow were generated to present as much comparative data as possible.

a. Wildlife Resources and Seasonal Subsistence Strategies

Henry Miller (1984:372-394) suggests that early colonial sites follow a subsistence pattern which changed over time as the Chesapeake became more settled. Typically, on sites from the first half of the seventeenth century, initial deposits reflect a greater focus on the use of wildlife rather than domestic species, as a result of which seasonal scheduling played an important role. As settlements became more stable, there was a change to a greater reliance on domestic species and a corresponding decrease in seasonal variation. Archaeologically
this switch in time can be seen in species composition in sealed, stratified deposits. Seasonal subsistence activities are summarized in Table 8.

Table 9 lists species present within features and their counts. This table gives the range of wildlife and domestic species present across the site. Table 10 lists the same information by the grouped features used in this analysis. The presence of a range of wildlife species indicates that seasonal procurement strategies were employed by the site's occupants and that they included 1) hunting, 2) fishing, and 3) oystering. The seasons during which species would have been exploited and the methods used are listed in Table 8. While the counts for wild mammal species are low, mollusca and fish are present in large numbers. This suggests that subsistence activities focused around the site and that there was more of a dependence on riverine wildlife resources than on game animals. The focus on riverine resources suggests the interior of the peninsula was being avoided.

In order to examine the ways in which subsistence activities were scheduled, it is necessary to review the habits of the exploited animals. Certain species of wildlife, such as Deer, Opossum, Raccoon, and Turtle, are available year-round in the Chesapeake. Deer are foraging animals that live in woods as opposed to forest and they do not migrate seasonally. Competition with Native Americans probably limited the supply of this resource since the Native Americans conducted deer drives in the fall, setting fires to drive the animals to the slaughter (Miller 1984:141). Opossum and Raccoon are also foragers which live in woods and they would have been used to supplement the Compton diet during the spring.

Other species, such as various fowl, fish (Sheepshead, Drum, Yellow Perch), and Crab, are only available seasonally. Unfortunately no wild bird species were identified from the site, due in large part to the fragmented state of the bones. Sheepshead, Drum, and Crab come up into the Bay and partway into the rivers when the salinity levels rise from late spring to early fall. Both Sheepshead and Drum are bottom-dwelling species that feed on mollusca. As a result, they are commonly found in association with oyster beds. These fish can be taken on a line and were abundant fish in the seventeenth century. Crab are also bottom dwellers that can be caught with a net. Yellow Perch are more common when salinity levels drop, so they would have been present from late fall to late spring. They are top dwellers which can be taken with a line.

Two Features were selected for a basic comparative study of shell from the site. A visual examination was made of shells from Feature 8, a historic clay pit, and from Feature 15, a prehistoric cooking pit. Feature 8 contained a very large sample size of shell in contrast to Feature 15. While oyster shell and cowrie shell were recovered in Feature 8, Feature 15 contained
TABLE 8

SCHEDULING OF ACTIVITIES

<table>
<thead>
<tr>
<th>Activities</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunting</td>
<td></td>
</tr>
<tr>
<td>Deer, Raccoon, Opossum</td>
<td>October - May</td>
</tr>
<tr>
<td>Fishing</td>
<td></td>
</tr>
<tr>
<td>Sheepshead, Drum, Crab</td>
<td>May - October</td>
</tr>
<tr>
<td>Yellow Perch</td>
<td>October - May</td>
</tr>
<tr>
<td>Oyster</td>
<td>October - April</td>
</tr>
<tr>
<td>Agriculture</td>
<td></td>
</tr>
<tr>
<td>Planting Tobacco</td>
<td>February - October</td>
</tr>
<tr>
<td>Slaughter</td>
<td></td>
</tr>
<tr>
<td>Cow, Pig, Sheep/Goat</td>
<td>October -</td>
</tr>
</tbody>
</table>
TABLE 9

SPECIES COUNT BY FEATURE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td></td>
<td></td>
<td>1</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>115</td>
<td>5</td>
<td>67</td>
<td>14</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Cow</td>
<td></td>
<td></td>
<td>11</td>
<td>9</td>
<td>1</td>
<td>162</td>
<td>8</td>
<td></td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td></td>
<td></td>
<td>4</td>
<td>19</td>
<td>12</td>
<td>86</td>
<td>3</td>
<td>35</td>
<td>2</td>
<td>2</td>
<td>35</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td></td>
<td></td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Deer</td>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Rodent</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td></td>
</tr>
<tr>
<td>Opossum</td>
<td></td>
</tr>
<tr>
<td>Mole</td>
<td></td>
</tr>
<tr>
<td>Raccoon</td>
<td></td>
</tr>
<tr>
<td>Unidentified Mammal</td>
<td>2</td>
<td>147</td>
<td>27</td>
<td>138</td>
<td>9</td>
<td>887</td>
<td>138</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>115</td>
<td>35</td>
<td>50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crab</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Turtle</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Squamata</td>
<td></td>
</tr>
<tr>
<td>Drum</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sheepshead</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Yellow Perch</td>
<td></td>
</tr>
<tr>
<td>Unidentified Fish</td>
<td>10</td>
<td>204</td>
<td>181</td>
<td>99</td>
<td>26</td>
<td>1238</td>
<td>9</td>
<td>1</td>
<td>23</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>245</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified Bone</td>
<td>4</td>
<td>281</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>787</td>
<td>153</td>
<td>492</td>
<td>57</td>
<td>2538</td>
<td>167</td>
<td>2</td>
<td>88</td>
<td>15</td>
<td>7</td>
<td>143</td>
<td>499</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

122
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>GROUPED FEATURES</th>
<th>F.3</th>
<th>F.6,16,17</th>
<th>F.5,8,9,21</th>
<th>F.7,19</th>
<th>14,18 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td></td>
<td>16</td>
<td>8</td>
<td>124</td>
<td>3</td>
<td>111</td>
</tr>
<tr>
<td>Unidentified Bird</td>
<td></td>
<td>11</td>
<td>25</td>
<td>170</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pig</td>
<td></td>
<td>4</td>
<td>22</td>
<td>74</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td></td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Deer</td>
<td></td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Rodent</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Opossum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Mole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Raccoon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Unidentified Mammal</td>
<td></td>
<td>437</td>
<td>252</td>
<td>968</td>
<td>14</td>
<td>138</td>
</tr>
<tr>
<td>Crab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Turtle</td>
<td></td>
<td>4</td>
<td>1</td>
<td>22</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Squamata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Drum</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheephead</td>
<td></td>
<td>11</td>
<td>9</td>
<td>57</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>Yellow Perch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Unidentified Fish</td>
<td></td>
<td>204</td>
<td>113</td>
<td>1348</td>
<td>35</td>
<td>268</td>
</tr>
<tr>
<td>Human</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Unidentified Bone</td>
<td></td>
<td>4</td>
<td>201</td>
<td>15</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>708</td>
<td>642</td>
<td>2860</td>
<td>74</td>
<td>587</td>
</tr>
</tbody>
</table>
oyster shell and sanguin clam. No actual quantification of the shell was undertaken.

The Compton historic features contained large deposits of oyster shell, particularly in Feature 8. The shells in Feature 8 were large and elongated, measuring an average of 6 inches in length and 3 1/2 inches in width (Plate 42). Kent (1988:28-33) classifies this type of shell as channel oysters which lived in deep waters, bedded in soft mud. In comparison, there were few oyster shells in the prehistoric cooking pit and they tended to be small, round, and flat, measuring an average 3 1/2 inches in length and 2 1/2 inches in width (Plate 43). These animals were sand oysters which lived in shallow waters and were bedded in sand.

It has been shown that oyster shells can be used to study harvesting practices by examining their size and shape. The size can reveal the intensity of harvesting practices as there is a definite correlation between the decrease in oyster shell size and the increased intensity of harvesting (Kent 1988:48). The shape of oyster shells can reveal the physical surroundings, such as depth and environment, from which they were harvested. This information can in turn indicate what harvesting methods were used.

Kent (1988:52) lists three methods of harvesting: hand collecting, tonging, and dredging. Hand collecting, the most likely method used by Native Americans, would have been limited to shallow waters, potentially leading to over-harvesting. The small size of the oyster shells found in Feature 15 would tend to support the assumption. Tonging, or raking, allows for harvesting oysters to a depth of over 10 feet, while dredging allows for harvesting to a depth of 50 feet or more. Both of these methods have been used in North America since the mid-seventeenth century according to Kent. The earliest record describing the use of oyster tongs in Maryland dates to 1730; however, data from the Hicks Site (1720-1730), St. Mary's City, argued for earlier initial use (Kent 1988:53) and now Compton provides evidence of tonging in seventeenth-century Maryland.

Large accumulations of oyster shell can be the remains of meat preservation activities. The shells are opened, either by prying or heating, and the meat placed in the sun to dry or over a low-burning, smokey fire (Kent 1988:59). The lack of pry marks on the oyster shells from Feature 8 and the fact that a few of the shells were burned to a gray color suggest that they were opened using heat. Due to the proximity of Feature 8 to the two historic cooking pits (Features 12 and 2), it can reasonably be assumed that they were processed in this location.

A cowrie shell was also discovered in Feature 8. The shell is of a variety known as Atlantic Yellow Cowrie. The range of this species is South Carolina to Brazil (Abbott 1968:110) and this
PLATE 42: Oyster Shells from Historic Deposit (Feature 8). Average Measurement 6" x 3½"
PLATE 43: Oysters (left) and Sanguin Clams (right) from Prehistoric Deposit (Feature 15). Average Oyster Measures 3½" x 2½"
type of shell was used by Europeans for trade with Native Americans (Abbott 1968:110).

Sanguin clam was the predominant species in Feature 15. The shells are from the Purplish Tagelus species which ranges from Massachusetts to Florida and Texas. Like the cowrie mentioned above, these animals are commonly found in sandy mud, intertidally up to a depth of 25 feet and are edible (Abbott 1968:250).

Shellfish played an important role in the diet of both the prehistoric and historic inhabitants of 18CV279. Feature 15, the prehistoric cooking pit, predominantly contained sanguin clam and there were a small number of oysters. Both species found in this feature are located in shallow waters, in sandy mud. The small size of the oyster shell suggests the coastal area had been over-harvested in prehistoric times between A.D. 780 and 920, the date of the deposit. Judging by their burned condition and their location in ash-filled Feature 15, the shellfish were probably preserved by drying or smoking.

Feature 8, the historic feature, primarily contained channel oysters shells. Oysters would have been recovered from a depth requiring the use of tongs or rakes. The large number of shell and the indications that many were burned, suggests that shellfish were being preserved at Compton. The presence of a cowrie shell, which most likely was used for adornment, could be another indication of trade with Native Americans.

The analysis of the Compton faunal collection indicates that there was a differential distribution of wildlife species across features (see Table 9). Turtle and Sheepshead were present in each of the grouped feature areas and deer was present in Feature 3; Features 5/8/9/21; and Features 14/18. However, Opossum, Raccoon, and Yellow Perch were present only in the Feature 5/8/9/21 area, and Drum was restricted to Feature 3. The Feature 5/8/9/21 area had the greatest concentration of artifacts from the site and the greatest diversity of faunal species. If wildlife faunal diversity indicates the first stage of colonial site occupation (Miller 1984:372-394), this area contains some of the earliest deposits on the site.

b. Animal Husbandry

According to written records, it is clear that the science of animal husbandry was practically abandoned during the seventeenth century in the Chesapeake (Miller 1984). Livestock was neglected and allowed to roam free, minimizing the attention that needed to be spent upon them. The reason given for this lack of attention was the preemptive importance of tobacco and its required care. Tobacco was the cash crop of the area for decades and was the single most important activity on the farms/plantations. Mention is made of animals being penned during the early
colonial period, but this practice was generally abandoned (Miller 1984:229).

At Compton, excavation revealed post molds which have been interpreted as being the remains of an animal pen (Fence 1) which was later moved and reduced to enclose a smaller area (Fence 2). This seems to indicate that initially the site's occupants attempted to maintain husbandry practices while the later reduction in the size of the pen points to a modification of their traditional methods.

Of the three domestic mammal species present, cow has to be considered the most important while alive since this species can provide dairy products. If any species were to be penned, it would most likely have been cows. This is borne out by the archaeological evidence since, unlike pig and goat/sheep, all body parts for cows were present. Figures 22, 23, and 24 present body part distributions for cow, pig, and sheep/goat from the entire site and what is immediately apparent is that cow is the only species for which phalanges were recovered.

Goats and pigs are intelligent creatures and more capable of taking care of themselves than are cows. Most likely these animals were pets as well as food resources and their foraging would probably not have taken them too far from the site, especially if there was dietary garbage strewn around the dwelling. Domestic animals are bred to be docile and friendly so that they can easily be herded and slaughtered when necessary.

c. Butchering Practices

The archaeological record shows that element distributions for pig and sheep/goat are limited. Figure 23 indicates that for pig the element distributions include primarily cranial bones, followed by upper limbs and small percentages of shanks and metapodials. Over the entire site, only one pig phalange was recovered. This evidence suggests that the pigs were slaughtered off-site where the carcasses were butchered and then specific meat cuts were brought back. The organs, including the brain and tongue, would definitely have been consumed. Indeed, many of the cranial bones consisted of broken mandibles which indicates marrow as well as tongue was extracted. It seems likely that if the pigs were butchered in the woods and the meat was carried back to the site, then primary rather than secondary meat was selected.

Figure 24 shows that sheep/goat element distributions follow the same pattern as pig, the most notable divergence being a higher relative percentage of lower hindlimbs which is probably due to differential preservation. Again, there were few phalanges recovered for this species on the site.

Overall, cow, pig, sheep/goat, and deer bones all exhibited butcher marks. They consisted primarily of chop marks, along
FIGURE 22: Cow Elements
FIGURE 23: Pig Elements
FIGURE 24: Sheep/Goat Elements
with cut marks and spiral fractures (Plate 44). Chop and cut marks frequently occur together. Longbones were generally chopped into three cuts of meat and the large sections produced would most likely have been stewed. Spiral fractures, on the other hand, can occur on fresh bone when trampled so that they are not good indicators of butchering activities.

The bones at Compton show indications that they were valued for their marrow content. Certain bones such as femora and humeri, for example, have large cavities at the proximal ends. These elements were cracked with regularity to extract the marrow.

Age at death of the animals at Compton varied among the species. There were two relative age groups for cow: fully mature individuals and immature individuals. Cows that are slaughtered young for meat are generally allowed to attain a certain weight first. If they are going to be used for meat, and the interest is in saving the cows' milk for human consumption, neonatals are expected. This practice was discovered in the Feature 6/16/17 group, where a neonatal metatarsal was identified.

Pigs consisted primarily of immature individuals as evidenced by the high frequency of unerupted third molars and the presence of a number of unfused longbones. Sheep/goat profiles were difficult to ascertain due to a lack of data; however, in general, they seemed to be immature as indicated by an infused diaphysis of the scapula glenoid cavity.

d. Diet

Meat was a major component of the diet at Compton and was probably supplemented with vegetables and grains. The slaughter of large mammals would have taken place about mid-fall, after the tobacco crop had been shipped and the temperature had cooled. Large amounts of meat would then be preserved by smoking, salting (either dry or in brine), pickling, and potting. The meat would last several months, and might be supplemented with fresh meat.

The site faunal assemblage reflects a seasonal diet which may have changed over time to rely more heavily on domestic animals. The subsistence pattern can be split into seasons reflecting the availability of preserved foods. During the summer, fish was a primary food source as seen in the large amounts of fish remains in the five groups of features. In late fall, however, the drop in salinity levels would cause sheepshead and drum species, exploited by the Compton inhabitants, to leave the area (Plate 45). It was also at this time that the slaughter of domestic mammals took place and the meats were preserved. This was also the season when oysters were harvested and preserved. It is suspected that during spring, wild game species and preserved meats were major food sources. Two sets of deer antlers (Plate 46) were recovered from the Feature 5/8/9/21 area and because one rack is fully developed (thirteen points), it is assumed that the animal was killed in the winter months.
PLATE 44: Butchered Bone (Cow and Pig). All have been chopped.
PLATE 45: Sheepshead Skull Parts and Vertebrae
PLATE 46: Deer Antlers. Thirteen-point rack.
e. Activity Areas Across the Site

Tables 11 through 15 show element percentage distributions for cow, pig, sheep/goat, and deer, by feature area. Feature 3 shows a consistent pattern from one species to another, with the exception of pig (see Table 11). For the sheep/goat and deer species, 100 percent of the material is cranial. The cow species is represented by 70 percent cranial material and 30 percent metapodial. By contrast, pig cranial material amounted to less than 10 percent of the total, while the balance consisted of upper forelimb and hindlimb. Because of the prevalence of waste bone, represented by cranial elements, this feature is considered a butchering refuse dump.

Feature group 6/16/17 differed slightly by the absence of deer, and the distribution of elements for each species present is slightly different (see Table 12). Pig is primarily represented by cranial and metapodial material; however, cow has the greatest range of body parts while sheep/goat is represented by cranial material and shank elements. In sum, the data are inconclusive, but there seems to be a mix of butchering waste and dietary refuse.

Feature group 5/8/9/21 has a wide range of element distributions for the four species (see Table 13). At first glance, there seems to be a predominance of pig and cow cranial material; however, the bones which make up this category in both cases are mandibles which would indicate that they represent the remains of tongue extraction. Sheep/goat is made up of meat-bearing components. Finally, deer is composed of 70 percent cranial material (including antlers), with the balance consisting of high value parts such as the upper hindlimb and forelimb. To summarize, this area of the site represents primarily dietary refuse, along with primary butchering waste such as the deer skull and antlers, and secondary butchering waste which includes pig and cow mandibles. Also, the range of wildlife present, particularly in Feature 8, suggests that this location contains some of the earliest faunal deposits.

Feature group 7/19 is similar to Feature group 6/16/17 in that there is no deer (see Table 14). In fact, except for less than 1 percent cow bone, the only large mammal identified was pig, which was primarily represented by cranial material. Overall, this feature group is composed of butchering waste.

The Feature 14/18 area contained all four large mammal species and for each species contained primary meat-bearing components except for the pig species (see Table 15). Here again the pig is represented by mandibles and maxilla. Therefore, this deposit is believed to contain prime dietary refuse with a small amount of secondary butchering refuse in the form of pig mandibles and snouts.
Compton Faunal

F.3

TABLE 11

<table>
<thead>
<tr>
<th>Animal</th>
<th>Antler</th>
<th>Upper Forelimb</th>
<th>Upper Hindlimb</th>
<th>Lower Forelimb</th>
<th>Lower Hindlimb</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep/Goat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 11
Compton Faunal
F.5,8,9,21

TABLE 13

<table>
<thead>
<tr>
<th></th>
<th>Deer</th>
<th>Pig</th>
<th>Sheep/Coat</th>
<th>Cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>antler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up. forelimb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up. hindlimb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lwr. forelimb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lwr. hindlimb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cranial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vert. & ribs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

relative percent

TABLE 13
Compton Faunal

F.7,19

TABLE 14

<table>
<thead>
<tr>
<th>Element</th>
<th>Pig</th>
<th>Cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homocore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Forelimb</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Upper Hindlimb</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Low Forelimb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cranial Vert & Ribs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Hindlimb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative percent
Compton Faunal
F.14,18

TABLE 15

<table>
<thead>
<tr>
<th></th>
<th>Deer</th>
<th>Pig</th>
<th>Sheep/Goat</th>
<th>Cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cranial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up. forelimb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up. hindlimb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vert. & ribs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lwr. forelimb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lwr. hindlimb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

relative percent

antler up.forelimb up.hindlimb lwr.forelimb lwr.hindlimb feet
To summarize, the five discrete sections of the site that were studied can be split into areas where dietary refuse and butchering refuse were deposited to show the differential use of space across the site. Feature 3 and Feature group 7/19 were butchering refuse pits while Feature group 6/16/17 is a more ambiguous mix of butchering and dietary refuse. Feature group 5/8/9/21 and 14/18 have primary dietary refuse as well as secondary butchering waste.

f. Summary

There should be an observable difference between the faunal assemblages from the beginning of the site's occupation and those which were deposited just prior to its abandonment if the occupation is of sufficient duration. Miller (1984:45-53) suggests that a wider range of species would have been tapped initially then, as settlement stabilized, a dependence on more traditional resources resulted. This means that earlier archaeological deposits should have a greater variety of wild species while later proveniences would be expected to have primarily domestic species. Table 10 appears to support this thesis. Wild species were present in Features 3, 6, 7, 8, 9, and 18, with Feature 8 showing the greatest diversity, followed by Features 3, 6, and 18. These deposits suggest that during the winter occupation, there was a focus on riverine resources supplemented with domestic animals.

Animal husbandry practices may have followed some traditional European patterns initially as evidenced by the presence of an animal pen (Fence 1), which suggests that care was given to some of the livestock. The cows appear to have been treated differently than pig or sheep/goat, as indicated by the differential distribution of body parts over the entire site. Cows were most likely kept penned at the site for dairying use. In contrast, pig and sheep/goat body parts are only partially represented. This evidence suggests that they were caught and slaughtered off site so that only parts of the carcasses were brought back and eventually discarded at the site.

6. Floral

The floral material was primarily retrieved from the flotation samples, although corncob fragments were found during the excavation. While no quantification was made, the presence of a wide variety of wild and cultivated species was noted which included fruits, crops, and weeds. The fruit remains were domestic varieties such as peach and cherry and other edible varieties not necessarily cultivated by man, such as persimmon, raspberry, and pin cherry. A number of crop species were present, such as corn, barley, sorghum, soybean, and possibly cotton. Weeds included many species found in areas of intensive agriculture such as chenopodium, oxalis, and ragweed.
Some of the floral species recovered at Compton clearly post-date the site, but the charred corncobs (Plate 47) recovered from Feature 8 definitely date to the time of occupation. They have broken vertically along the row lines so that, although they are not whole cobs, they could be reconstructed to show that eight rows were originally present. This type of corn, in evolutionary terms, first made its appearance after A.D. 1200 and was commonly grown by Native Americans during the seventeenth century.

The barley, soybeans, and cotton recovered from Compton date to more recent times. With the soil exhausted from growing tobacco in Virginia and Maryland, there was a change in agricultural production in the eighteenth century and farmers began to shift to more of a subsistence agriculture in many areas. Winter barley is now grown in the southeastern states for autumn and spring feed and as a ground cover, and soybean is grown for a variety of products, most of which are not related to diet. Cotton has been grown in the Chesapeake since the Jamestown colony was founded; however, the major boom took place in the eighteenth century, thus indicating that these crop seeds are intrusive to the seventeenth-century features at Compton. The variety of floral materials recovered from the site and their wide distribution horizontally and vertically suggest there was mixing either from the excavation process or from migration in the ground caused by roots, insects, or rodents. Soybean, for example, was recovered from Level 4 in Feature 8 (see Figure 9), yet these crops are a relatively recent arrival to the Americas.

Though the floral materials were not quantified, it is important to note that the flotations were for the most part sterile. It is thus quite possible that what is present may have been airborne. In sum, the only species which can be said to definitely belong to the seventeenth-century occupation is the eight-row corn.

E. DATING

Dating the occupation of the site to the third quarter of the seventeenth century is well supported by various classes of artifacts recovered from 18CV279. It thus seems clear that the occupation of the site occurred during Ishmael Wright's ownership of the property between 1651 and 1684 (see Chapter III).

Particularly useful in establishing a presence at the site are the smoking pipes. For example, the 424 pipe stems from the plowzone, which represent the entire span of occupation, yielded a date of 1645.67. Further, of the three different pipe makers' marks, Flower Hunt's has the latest beginning date of 1651 and his business ended by 1670, well within the presumed occupation period. Finally, a study of all the pipe bowl shapes (Table 16) indicates that the styles overlap in the 1640-1660 period.
PLATE 47: Fragments of Eight-Row Corn
TABLE 16: Pipe Bowl Chronology

145
The dates of manufacture of the ceramic types present at Site 18CV279 (Table 17) also indicate a third-quarter seventeenth-century date, between circa 1650 and circa 1661. The collection includes a range from early European wares, such as Saintonge (1550-1650), to locally made Morgan Jones (ca. 1661-1680), the only ware type which has a beginning date of manufacture after 1650.

In the glass assemblage, the wine bottle recovered is of the earliest British form, circa 1652, and the bulk of the collection is made up of case bottles which are the expected form on pre-1650 sites. Additionally, none of the glass samples contained lead, which ensures that they do not date the site to post-1675.

In sum, the combined evidence provided by documents, architecture, and artifacts squarely places the domestic occupation of Compton between 1651 and 1684 during Ishmael Wright's ownership. The architectural record of one building episode, with no additions or repairs to the structures, together with the dates of occupation suggested by artifacts (1650s, 1660s), indicate that the presence was of short duration. It is entirely possible that the resident was Antoine Lecompte, who could have been at Compton prior to 1669 when he appears as Justice of the Peace in Dorchester County, across the Bay.
TABLE 17: Dates of Manufacture for Ceramic Types

- NORTH DEVON: 1650-1700+
- MORGAN JONES: 1661-1680
- ITALIAN SLIPWARE: 1625-1700
- DUTCH REDWARES: 1625-1675
- FAIENCE: 1620-1700
- MAJOLICA: 1650-1700+
- BLUE DEC. GERMAN: 1620-1700
- BROWN MOTTLED GERMAN: 1550-1650
- SAINTONGE: 1600-1610

1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700

1610-1660
1625-1700
1625-1675
1620-1700
1550-1650

1650-1700+
1640-1700+
1650-1700+
1620-1700
VI. SYNTHESIS

A. INTRODUCTION

According to information gathered during the Phase I and Phase II investigations by Thunderbird Archaeological Associates (Gardner 1988:27), the estimated occupation period of Site 18CV279 was circa 1650 to 1720. Therefore, when the LBA proposal was prepared, it was assumed that the site would yield evidence of a historic presence spanning approximately 70 years, a length of time considered sufficient to leave physical evidence reflecting Maryland's cultural changes from a frontier to a well-established colony. Thus, the three research topics chosen included exploring specific changes in the building organization, use of space, and subsistence practices at the site during the formative period.

LBA archival and archaeological research soon revealed that the site actually was occupied for less than half the time estimated by earlier investigators. Indeed, historical research indicated that initial occupation began circa 1651 and possibly ended eleven years later in 1662 when Antoine Lecompte returned to England. The archaeological dating of the site supported this presence within the third quarter of the seventeenth century (see Chapter V).

With the reduced potential for detecting cultural changes at the site during its occupation, the research focus shifted to a description of the pattern in building organization, use of space, and subsistence practices at 18CV279 in the third quarter of the seventeenth century. Comparisons with other sites in the region were then made to examine the extent to which this site conformed or differed in respect to the three research areas.

B. RESEARCH TOPIC 1

According to Keeler's settlement model, early sites on the Chesapeake are expected to show evidence for wattle fences and few outbuildings. As occupation becomes more established, more permanent post-and-rail fences appear and the number of outbuildings increases. In addition, a formal distinction becomes evident between forecourt and service yard at the homelot (Keeler 1978).

Although Compton was a frontier occupation established only 15 years after the beginning of settlement in Maryland at St. Mary's City in 1635, the expected settlement pattern was not found. The first structure was a post-and-rail animal enclosure, followed by a dwelling, five outbuildings, and a smaller post-and-rail enclosure. There were no other fences to enclose yards or fields during the domestic occupation of Compton.
This pattern is very different from both earlier and later rural sites that have been discovered in frontier settings in Virginia. Domestic structures at Wolstenholme circa 1619-1622 (Noel Hume 1982), Castle Mill Run circa 1630-1650 (Andrews 1984:29-32), and Clifts circa 1670 (Neiman 1980), all occupied 15, 30, and over 60 years, respectively, after the settlement of Jamestown, had clear evidence for wattle fences and few outbuildings. Additionally, the houses were fortified with palisades.

The less frontier-like settlement at Compton, with more permanent post-and-rail enclosures for penning animals only, a good number of outbuildings, and open yards with no physical barriers may be the result of a less belligerent relationship with Native Americans. Other indications at 18CV279 of more peaceful ties with the Indians in Maryland are manifested in the presence and use of Native American artifacts such as smoking pipes and the Potomac Creek vessel, eight-row corn, and perhaps the adaptation of ideas as might be expressed in the use of cooking pits, unknown elsewhere on historic sites of this period.

C. RESEARCH TOPIC 2

Previous studies in the Chesapeake (King and Miller 1987) have outlined how the study of refuse disposal patterns in yards between buildings can reveal the ways in which former inhabitants used and organized space around their structures. It has been argued that refuse pits represent exceptional events and are unlikely to reveal functional and chronological changes in the use of yards during the occupation of a site. Yard middens, on the other hand, are the result of refuse disposal over the entire occupation period and they can therefore be used for functional and chronological studies of yard areas through the study of the distributions of artifact classes.

This approach was the basis for the initial direction of fieldwork at 18CV279 which called for a 10 percent sample of the middens in the plowzone. The artifacts in the 162 units were quantified according to general classes then mapped for the identification of middens based upon their relative densities across the site. While two large and two small middens were identified, neither chronological nor functional differences in their content was evident following laboratory analysis. In general, there was a concentration of domestic refuse that was broadcast in a wide arc in a central service yard at Compton, between the cluster of buildings and the larger refuse pits to the southeast, and a smaller midden in the open area north of the buildings.

While not chronologically sensitive, the distribution of soil chemicals in the plowzone assisted in the study of the site. Phosphate concentrations, for example, identified the general perimeter of the entire site and suggested that Structure 4 was probably an animal barn. The chemical's absence in the vicinity
of Structure 5, indicated that this area was probably not for housing animals and was rather used to store grain.

Artifacts in refuse pits surrounding the site more successfully revealed the location of different activities. Architectural work, for example, left the largest pit (Feature 8) to the west where clay was initially mined for building the dwelling's chimney. East of the cluster of buildings, a series of pits (Features 13, 14, 18) marked the location where mortar was mixed for building the hearth. Later pits (Features 3, 6, 16, 17) were excavated for additional clay to repair the clay chimney.

The function of all these pits subsequently changed as they became repositories for domestic refuse. A study of three different areas where pits were located revealed an apparent chronology of changes in consumer behavior. In the earliest pit (Feature 8), the greatest variety of animal species was recovered as expected from the initial occupation along with the highest concentration of Dutch food preparation vessels. In the middle period (Feature 3), there is a lesser number of wild species represented in the diet and the food preparation ceramics are dominated by English North Devon wares. The latest sequence of pits (Features 6/16/17) shows lessening quantities of wild food and an artifact assemblage dominated by food serving vessels. It also indicates that majolica, which is actually an older ceramic type, replaced faience at the site.

Five discrete refuse disposal areas surrounding the site also showed differences in the discard of food waste. The Feature 3 area north of the dwelling and Feature 7/19 south of the same building served as repositories for butchering waste. Although mixed with dietary remains, butchering waste was also present northeast of the house (Features 6/16/17). Finally the Feature 8/5/9/21 area on the western edge of the site and Features 14/18 to the east primarily yielded dietary by-products and lesser amounts of secondary butchering evidence. Feature 8 is contiguous to Feature 12 and near Feature 2, both apparently oyster cooking pits. A large number of oyster shells were deposited in Feature 8 on two separate occasions (see Figure 9), reinforcing the argument that this west side of the site was used for food preparation and dietary waste discard.

In comparison with other sites in the region, Compton did not lend itself to the types of plowzone midden studies which have recently been successfully undertaken. The short occupation span at 18CV279 only partially explains the relatively homogeneous middens. Unlike Compton occupants, the residents at St. Johns (King 1988) and Van Sweringen (King and Miller 1987) in nearby St Mary's City, were wealthy, in more densely settled areas, and occupied their dwellings during a more established period. Both sites also became public buildings (Inns) which further elevated the plowzone midden artifact counts for comparison with earlier periods and provided clearly documented (through the written record) changes in the use of the sites as they shifted from
domestic to public use. Higher artifact counts and a greater variety of artifact classes gave greater resolution to these changes.

Rural seventeenth-century sites of this period in Maryland, however, can be expected to be conservative and not subject to major observable changes in lifestyles or to the need for formality as seen in a more populated setting. Compton truly embodies this static frontier profile.

In closing, it must be noted that the contents of the features, while perhaps not representing the continuous deposition of artifacts represented by the plowzone materials, provided chronologically discrete units of information for the entire occupation, which were important to the understanding of the site. Unlike plowzone artifacts, their contamination by artifacts from later events could readily be observed and accounted for. In addition, object preservation and thereby identifiability (e.g., of ceramic vessel form) was unmatched by the plowzone material.

D. RESEARCH TOPIC 3

Europeans encountered unfamiliar resource bases as they settled the Chesapeake in the seventeenth century. This situation required adaptation of their traditional food procurement, production, and preparation practices. As a result, a mix of subsistence practices was used during this adjustment period. Miller (1984) suggests that at initial settlement, rural subsistence was based upon slash-and-burn/hoe agriculture and the exploitation of benthic fish species, in addition to the hunting of land fauna such as deer.

The faunal and floral data from Compton indicate that its inhabitants did engage in a variety of subsistence practices in response to their new environment. A measure of the range of wildlife species shows that seasonal procurement strategies were employed by the site's occupants. For example, land fauna such as deer were hunted, benthic fish species such as Sheephead and Drum were taken, oysters were harvested, and native eight-row corn was consumed if not raised. By sheer numbers, the wild faunal sample suggests that there was more of a dependence upon riverine rather than game resources, which shows that the Compton occupants tended to avoid inland food sources. The shape of the oysters indicates that these shellfish were procured from deeper environments in channels which would have required the use of tongs. The pits in which they were probably processed have no known parallels on sites of this period so that these features may represent the adaptation of Native American food preparation techniques.

The focus on local resources was supplemented with domestic species of animals which included cow, pig, and sheep or goat. Based upon the absence of certain elements, pigs and sheep or
goats were allowed to roam free, as was common in the Chesapeake during this period, and harvested and butchered off-site so that only certain cuts were taken back to the dwelling. The Compton inhabitants, however, chose to retain traditional animal husbandry practices by keeping some animals, probably cows, penned through the duration of the occupation as evidenced by the presence of relatively complete cow skeletons and the two animal enclosures.

E. RESEARCH THEMES

1. Ethnicity

It is important to note that a number of food-related features and artifacts discovered at 18CV279 raise the possibility that a Native American, perhaps a female, was resident at Compton. The two cooking pits have no known parallels on contemporary historic sites and would appear to have Native American counterparts and antecedents, including the three from the prehistoric period found at Compton. Also, a Potomac Creek cooking vessel was used and native eight-row corn was consumed along with a wide variety of wild resources familiar to Native Americans.

2. Class

While the Compton house is small even by contemporary standards, its scale does not necessarily suggest that the occupants were of lesser means. Indeed, a Paul Simpson, who lived in Charles County (Maryland or Virginia) in 1653 held the title of Gentleman yet lived in a smaller (15' X 15') dwelling of similar construction with Welsh chimney and clapboard (Stone 1982:120). The clay chimney at Compton was built with a hearth of mortared Dutch brick and the windows were appointed with leaded glass casements which indicate a measure of wealth.

Several other artifacts also suggest that the occupants had a fair measure of purchasing power and held a high rank in Maryland society. There was a spur decorated in gold leaf or wash and a decorative silver-plated mesh band which was probably used as a clothing ornament. The refined glass drinking vessels, which seem oddly out of place in this frontier environment, would also appear to identify the high status of the inhabitants.

3. Trade

While the Potomac Creek vessel and native eight-row corn found at Compton may be associated with a resident Native American (see Ethnicity above), they may also be a part of the site inventory, including smoking pipes, which resulted from trade with the Indians. Beads and scissors, also found at Compton, were typically part of the equipage used to barter with Indians and may thus link these finds to trade with the native population.
A much clearer understanding of trade emerges from a study of the Dutch material found at 18CV279. The inventory of objects from Dutch sources includes ceramics, bricks, smoking pipes, and probably the glass drinking vessels and beads. Both in their quantity and in their condition, the ceramics and pipes strongly suggest that they were in large measure kept for trade with other settlers or with Native Americans rather than for use. Many of the Dutch ceramics and pipes showed no wear and the pipes were broken in large fragments as if they had been stored before they were discarded.

F. CONCLUSION

The investigations at 18CV279 have made contributions to seventeenth-century research in the Chesapeake, to the Maryland State Plan, and to archaeological field methodology. The Compton Site is important for continuing research in the area because it has yielded a settlement plan (Figure 25) and artifact assemblage, uncontaminated by later occupation, for an early, short occupation in the Middle Chesapeake in the third quarter of the seventeenth century. Scholars can now use the 18CV279 artifact assemblage as a chronological marker for other sites, much as a shipwreck of known date.

Recovered information contributes to the Maryland Comprehensive State Historic Preservation Plan themes of ethnicity, class, and trade as well as to important research questions concerning seventeenth-century building organization, use of space, and subsistence. The site provides the strongest evidence yet uncovered of unrestricted and intense Dutch trade in Maryland during the mid-seventeenth century. The data thus contribute a new perspective on the way the interiors of Maryland homes were furnished during this period in which Dutch material culture was apparently more prevalent than previously known. The objects with which early Maryland inhabitants surrounded themselves were evidently largely indistinguishable from those of their European counterparts in the Netherlands (Plate 48).

This project also provided important information on archaeological methodology. The Compton Site indicates that small rural seventeenth-century sites of this period generally cannot be expected to show measurable changes in the use of space, particularly during short occupations. Plowzone data were shown to be of limited use in these situations. Discrete cultural deposits in the subsoil, in contrast, can show subtle chronological changes in consumer behavior in the areas of diet, food preparation, and disposal, and the purchase and discard of ceramics. Soil chemical data recovered from the plowzone was useful in establishing the different functional areas. At the Compton Site, phosphate clearly indicated the core of the occupation. This chemical could be used as a guide to refining the planning for excavations where there is ample time to both recover and analyze soils before fieldwork is initiated.
FIGURE 25: Interpreted Site Plan
PLATE 48: Vermeer's "Maid Servant"
Excavations at 18CV279 have also shown that 2.5-foot units are a rapid and reliable way to establish the perimeter of a site and to locate middens. The fieldwork additionally demonstrated that artifact quantifications should be conducted during excavation so as to serve as a guide in determining where plowzone samples should be increased in order to retrieve a valid percentage of the middens.
PUBLISHED STUDIES AND CONTRACT REPORTS

Abbott, R. Tucker

Andrews, Stephenson B. (editor)

Bailyn, Bernard

Baldwin, Jane (compiler)

Baldwin, Jane, and Roberta Bolling Henry (compilers)

Becker, M.J.

Barber, Edwin Atlee

Beaudry, Mary, Janet Long, Henry M. Miller, Fraser D. Neiman, and Gary Wheeler Stone

Bedford, Clay P.
Binford, Louis R.

Bradley, James W., and Gordon DeAngelo

Bridgwater, William, and Seymour Kurtz (editors)

Bridgwater, William, and Seymour Kurtz (editors)

Buchanan, William T., Jr., and Edward F. Heite

Camp, Helen

Carr, Lois Green, and Lorena S. Walsh
1980 Inventories and the Analysis of Wealth and Consumption Patterns in St. Mary's County, Maryland, 1658-1777. Historical Methods Newsletter 13(2):81-104.

Carson, Cary, Norman F. Barka, William M. Kelso, Garry W. Stone, and Dell Upton

Culver, Francis B.

Custer, Jay F., Ellis C. Coleman, Wade P. Catts, and Kevin W. Cunningham

Deetz, James
De Kleyn, Tekst J.

Denker, Ellen, and Bert Denker

Drahotova, Olga

Dunn, Richard S.

1988 Archaeological Investigations at the Proposed Patuxent Point Development (Phase 1) and 18CV279 (Phase 2-3) near Solomons, Maryland. Prepared for CRJ Associates, Inc., Camp Springs, Maryland.

Garrow, Patrick H., Steven D. Nicklas, Jay R. Cohen, Keith Reiner, and Amy Friedlander

Geismar, Joan

Glass, Bryan A.

Gregory, William K.
Griffiths, Dorothy

Hartsook, Elisabeth, and Gust Skordas

Henretta, James A.

Henry, Susan L.

Hurst, John G., David S. Neal, and H.J.E. Van Beuningen

Janowitz, Meta, Kate T. Morgan, and Nan A. Rothschild

Jones, William M.

Keeler, Robert Winston

Kelso, William M.

Kelso, William M., and Edward A. Chappell
Kent, Brett
1988 Making Dead Oysters Talk. Historic St. Mary's City. Maryland Historical Trust, Jefferson Patterson Park, Maryland.

Ketchum, William C.

King, Julia A.

King, Julia A., and Henry M. Miller
1987 The View from the Midden: An Analysis of Midden Distribution and Composition at the Van Sweringen Site, St. Mary's City, Maryland. Historical Archaeology 21(2):37-59.

Korf, Dingman

Louis Berger & Associates, Inc.

Martin, Alexander C.

Martin, Alexander C., and William Barkley

McCashion, John H.
1979 An Unique Dutch Clay Tobacco Pipe from the Blowers Oneida Site and a Preliminary Statement on the Seventeenth Century Oneida Site Sequence Based on the Pipe Data. Bulletin of the Chenango Chapter NVSAA 18 (1).

McKearin, Helen, and Kenneth M. Wilson

Mehlman, Felice
Miller, Henry Michael
1983 A Search for the "City of Saint Maries". St. Maries City Archaeology Series #1, St. Mary's City Commission, St. Mary's City, Maryland.

Mouer, L. Daniel

Myers, Thomas P., Michael R. Voorhies, and R. George Corner

Nash, Gary B.

Neiman, Frazer D.

Noel Hume, Ivor

Olsen, Stanley J.

Oswald, Adrian

Outlaw, Alain C.
1989 "Subberbs of James Cittie," Governor's Land
 Archaeological District Excavations: The 1976 Season.
 The University Press of Virginia, Charlottesville. In
 press.

Peterson, Harold L.
1956 Arms and Armor in Colonial America 1526-1783. The
 Stackpole Co., Harrisburg, Pennsylvania.

Pogue, Dennis J.
1987 Seventeenth Century Propietary Rule and Rebellion:
 Archaeology at Charles Calvert's Mattapany-Sewall.

Reineking-Von Bock, Gisela
1971 Steinzug, Katalog Des Kunstgewerbemuseums Köln.
 Kunstgewerbemuseum, Cologne, Germany.

Renaud, J.G.N.
 Guide To the Collections at the Rhodesteyn Museum,
 Neerlangbroek, Utrecht, The Netherlands.

Ritchie, Robert
1976 The London Merchants, the New York Market and the

Skordas, Gust (editor)
1968 The Early Settlers of Maryland. Genealogical Pub-
 lishing Company, Baltimore.

South, Stanley S.
1977 Method and Theory in Historical Archaeology. Academic
 Press, New York.

Stehling, Nancy A., and Meta F. Janowitz
1986 "A Coding System for Computer Tabulation of Historic
 Ceramics." Paper presented at the 1986 CNEHA
 conference at Rensselaer Polytechnic Institute.

Stein, Charles Francis
1960 A History of Calvert County, Maryland. By the author
 in cooperation with the Calvert County Historical
 Society, n.p.
Stephenson, R.L., and A.L. Ferguson

Stewart, R. Michael

Stiverson, Gregory A.

Stone, Garry Wheeler

Walsh, Lorena S.

Weaver, John W.

Wilcoxen, Charlotte
UNPUBLISHED SOURCES

Calvert County (consulted at the Hall of Records, Annapolis)
Wills
Inventories
Administrations
Patents
Certificates
Rent Rolls
Marriage Reference Index
Church Records (available on microfilm)
Index to Court Judgements
Index to Warrants and Assignments
Abstract of Deeds, 1787-1817, 1863-1867, 1873-1893
Index to Debt Books
Unpatented Surveys

Calvert County (consulted in Prince Frederick)
Register of Wills
Administration Records and Dockets
Libers (Deed Books)
Chancery Records
APPENDIX

PREHISTORIC FINDS
APPENDIX
PREHISTORIC FINDS

I. CERAMICS

There were 20 nondiagnostic prehistoric ceramics which consisted of small body sherd fragments measuring from 29 mm x 23 mm to 19.7 x 17.4 mm (see list below). Diagnostic prehistoric ceramics included three types: Mockley Plain, ca. A.D. 300-1200, Townsend/Rappahannock Fabric Impressed ca. A.D. 900-1700, and Potomac Creek Cord Impressed ca. A.D. 1200-1700. The Potomac Creek Cord Impressed ceramics formed a partially mended vessel from Feature 3, a historic deposit dating to the Compton occupation (ca. 1651-1684).

A. Prehistoric Ceramics: Nondiagnostic

TYPE 1: Cat. #168, F3/L1/W

<table>
<thead>
<tr>
<th>Paste:</th>
<th>Temper: finely crushed quartz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Texture: rough and clayey</td>
</tr>
<tr>
<td>Color:</td>
<td>Ext: 7.5YR 5/4 brown reddish brown</td>
</tr>
<tr>
<td></td>
<td>Core: 10YR 6/3 pale brown</td>
</tr>
<tr>
<td></td>
<td>Int: 7.5YR 5/4 brown reddish brown</td>
</tr>
<tr>
<td>Surface Treatment:</td>
<td>Ext: fabric impressed</td>
</tr>
<tr>
<td></td>
<td>Int: smoothed</td>
</tr>
<tr>
<td>Form:</td>
<td>Body: 6.9 mm</td>
</tr>
</tbody>
</table>

TYPE 2: Cat. #186, F9/L1/E & 165, F1/L3/E

<table>
<thead>
<tr>
<th>Paste:</th>
<th>Temper: coarse crushed quartz (predominantly rose-colored)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Texture: friable</td>
</tr>
<tr>
<td>Color:</td>
<td>Ext: 10YR 6/3 pale brown</td>
</tr>
<tr>
<td></td>
<td>Core: 10YR 4/1 dark gray</td>
</tr>
<tr>
<td>Form:</td>
<td>Body: 13 mm diameter</td>
</tr>
</tbody>
</table>
TYPE 3: Cat. #186, F9/L1/E

Paste:
Temper: medium crushed shell
Texture: clayey, shell parallel to surface
Color:
Ext: 10YR 5/3 brown
Core: 10YR 5/3 brown
Int: 10YR 6/6 brownish yellow
Surface:
Ext: fabric impressed
Int: smoothed
Form:
Body: 5.6 mm

TYPE 4: Cat. #184, F3/L2/E & 258, F3/L1/W

Paste:
Temper: medium crushed quartz
Texture: sandy feel and rough
Color:
Ext: 7.5YR 6/6 reddish yellow
Core: 10YR 5/4 yellowish brown
Int: 7.5YR 6/6 reddish yellow
Surface:
Ext: smoothed
Int: smoothed
Form:
Body: 7.5 mm & 7.6 mm

TYPE 5: Cat. #264, F6/L1/W

Paste:
Temper: medium crushed quartz and fine mica
Texture: surface smooth and sandy interior gritty
Color:
Ext: 5YR 6/8 reddish yellow
Core: 7.5YR 6/6 reddish yellow
Int: 7.5YR 6/6 reddish yellow
Surface:
Ext: burnished, possible remains of some sort of incised decoration
Int: smoothed
Form:
Body: 4.4 mm
TYPE 6: Cat. #234, F9/L1/W

Paste:
 Temper: small to medium crushed quartz, fine mica and straw. Some burned out and some burned and still visible in body and on surfaces
 Texture: smooth and clayey surface and waxy interior
Color:
 Ext: 5YR 5/4 reddish brown and 5YR 5/6 yellowish red
 Core: 10YR 5/3 brown
 Int: 10YR 2/1 black
Surface:
 Ext: burnished
 Int: smoothed
Form:
 Body: 6.3 mm

TYPE 7: Cat. #198, F8/L2/E

Paste:
 Temper: medium crushed quartz
 Texture: gritty
Color:
 Ext: 7.5YR 4/2 dark brown
 Core: 10YR 3/3 dark brown
 Int: 10YR 3/4 dark yellowish brown
Form:
 Body: base of a pinch pot

TYPE 8: Cat. #257, F3/L2/W

Paste:
 Temper: small crushed quartz
 Texture: clayey
Color:
 Ext: 10YR 6/6 brownish yellow
 Core: 7.5YR 6/6 reddish yellow
 Int: 10YR 5/4 yellowish brown
Surface:
 Ext: smoothed
 Int: smoothed
Form:
 Body: 5.8 mm
TYPE 9: Cat. #168, F3/L1/E & 355, F8/L5/E

Paste:
 Temper: small crushed quartz, fine mica, fine shell
 Texture: rough clayey
Color:
 Ext: 7.5YR 6/4 light brown
 Core: 10YR 6/3 pale brown
 Int: 10YR 3/1 very dark gray
Surface:
 Ext: smoothed
 Int: smoothed
Form:
 Body: 5.6 mm & 5.8 mm

TYPE 10: Cat. #165, F1/L3/E

Paste:
 Temper: small crushed quartz, shell (leached out)
 Texture: smooth clayey
Color:
 Ext: 5YR 6/4 light reddish brown & 10YR 5/2 grayish brown
 Core: 10YR 5/3 brown
 Int: 2.5YR 5/6 red over 10YR 5/2 grayish brown
Surface:
 Ext: burnished
 Int: smoothed
Form:
 Body: 6.1 mm
POTOMAC CREEK CORD IMPRESSED: Vessel from Cat. #s 168, 189, 257, 258 - all Feature 3

Date: ca. A.D. 1200-1700 (Stephenson and Ferguson 1983)

Paste:
Temper: crushed quartz with some inclusions of crushed rock or sand
Texture: hard and smooth with slight gritty feeling

Color:
Ext: ranges in color from 10YR 6/4 light yellowish brown to 10YR 3/1 very dark gray
Core: 10YR 6/4 near the exterior and 10YR 3/1 for rest
Int: 10YR 3/1 very dark gray

Surface:
Ext: smooth with slight evidence of cord markings, but could have been there. Flared rim is impressed with four rows of a cord wrapped dowel.
Int: smoothed

Form:
Vess: lip is flattened with no impressions in it. Rim is flared blending with the body to form a gentle curve (see Stephenson and Ferguson [1983] for examples of vessel forms, 116:fig.26 and plate XIII #F).

II. LITHICS

There were a total of 155 lithics, consisting predominantly of quartzite heat-altered fire-cracked rock (FCR) (count of 63 or 40.64%) and unmodified quartz flakes (count of 25 or 16.12%). Features 7, 8, and 9 account for 69.67%, or 108, of all the lithics. Individually, Feature 7 contained 37 or 23.87%; Feature 8 contained 40 or 25.8%; and Feature 9 contained 31 or 20%. The only tools found were a modified quartz bifacial from Feature 23 and a modified quartzite cobb from Feature 21.
B. Prehistoric Ceramics: Diagnostic

MOCKLEY PLAIN: Cat. #221, F5/L2/W

- **Date:** ca. A.D. 300-1200 (Stephenson and Ferguson 1963)
- **Paste:**
 - Temper: crushed shell (leached out)
 - Texture: clayey, crumbly, porous
- **Color:**
 - Ext: 7.5YR 6/6 reddish yellow
 - Core: 10YR 7/3 very pale brown
 - Int: 10YR 7/3 very pale brown
- **Surface:**
 - Ext: smoothed
 - Int: smoothed
- **Form:**
 - Body: 9.5 mm, 40 mm x 33.9 mm

TOWNSEND/RAPPAHANNOCK FABRIC IMPRESSED: Cat. #186, F9/L1/E

- **Date:** ca. A.D. 900-1700 (Stephenson and Ferguson 1983)
- **Paste:**
 - Temper: crushed unburned shell
 - Texture: clayey
- **Color:**
 - Ext: 10YR 5/3 brown and 10YR 4/2 dark grayish brown
 - Core: 10YR 5/3 brown
 - Int: 10YR 3/1 very dark gray
- **Surface:**
 - Ext: fabric impressed
 - Int: Smoothed
- **Form:**
 - Body: 8.2 mm, 22.6 mm x 17.2 mm