EXCAVATIONS AT 18CV272

William M. Gardner, Carole L. Nash, Joan M. Walker and William P. Barse

Prepared for:
CRJ Associates
Camp Springs, Maryland

William M. Gardner
Principal Investigator
January, 1989
Abstract

Phase III Excavations undertaken at 18CV272 uncovered several Mockley phase features including a basin shaped pit ca 4.5 feet deep by 10 feet in diameter. The pit (Feature 3), which penetrated the underlying coarse C-horizon, was clay lined and was bordered by four posts at points opposite each other. These posts, linked with erosional wash at the lowest level, indicate that at one time the pit had a protective overhead cover. At some later juncture, the pit began to be filled and several layers of organic debris with shell, bones and nuts were recovered. Near Feature 3 was a complex of post molds which may be the remnants of an associated structure. South of the pit, near a springhead, were four additional but smaller pits which also were filled with organic trash. A sixth storage/refuse pit was found just north of the structure. While no direct proof of intra-site synchronicity exists, the absence of feature overlap, differential pit sizes and overall layout suggest a single structure/single occupation community. Over 90% of the pottery was Mockley ware. Because of its size, Feature 3 appears to be too large to have been the storage unit for a single structure hamlet; it is suggested this pit may be part of the surplus storage for a larger dispersed but socio-politico-kin integrated unit. The size of Feature 3 also indicates a relatively high level of surplus generation for general foragers. The resources in the pit show a broad based terrestrial/saline estuary/fresh water stream exploitative base. It is further argued that the social/political structure of Mockley phase populations may be more complex than previously thought, and that inter-site integration, at least on the local level existed. Further supporting this is the high incidence of rhyolite, which appears to have been imported in late stage biface form, at the site, indicating an extended exchange network. Two lithic complexes were found. These were Selby Bay and Piscataway. The latter was made of the local cobble material, especially quartz. The former was exclusively of non-local materials including rhyolite and argillite. It is argued that these may be part of the same synchronic assemblage. The primary bases for this argument are association, limited rhyolite tool diversity, and the illogic (seemingly so) of a group of general foragers depending for their total lithic complement on exchange. Two C-14 dates, A.D. 900 from Feature 4 and 70 B.C. from Feature 3, were obtained. Neither appear acceptable.
Table of Contents

Abstract...i
Table of Contents..ii
List of Figures..iv
List of Tables..v
List of Plates..vi

Introduction...1
Environmental Setting..1
Previous Work..2

The Phase I Study..2
The Phase II Study...3
Surface Collection 18CV271/272..4
Features..5
Site Interpretation..6

The Phase III Study..7
Methodology/Field Investigations..8
Methodology/Laboratory Analysis..11
Results..13

Lithic Analysis..13
Ceramics..15
Features..19

Southern Feature Cluster...19
Feature 1...19
Feature 2...20
Feature 4...20
Feature 5...21
Feature 6...21
Feature 11...22

Feature 3 and Associated Features...23
Feature 3...23
Post Molds A-D...27
Gravel Stain 1...28
Feature 17...28

The Northwest Cluster of Features...29
Feature 7...29
Feature 8...30
Feature 21 ... 30
Feature 23 ... 30
Feature 24 ... 30
Feature 25 ... 31
Feature 26 ... 31
Feature 27 ... 31
Isolated Surface Finds .. 33
Floral and Faunal Material ... 33
Radio-carbon Dates .. 37
Summary and Conclusions ... 37
Personnel ... 48
Acknowledgements ... 49
References Cited ... 50
Figures ... 51
Tables ... 75
Plates ... 82
Appendix I (1988 Faunal Analysis) 93
Appendix II (1987 Faunal Analysis) 104
Appendix III (1987 Shell Analysis) 120
List of Figures

Figure 1: Study Area Location General (Maryland Research Units)................. 52
Figure 2: Study Area Location Specific (USGS quad).................................... 53
Figure 3: Sub-divisions of Patuxent Point Project.. 54
Figure 4: 18CV272 Site Plan Map... 55
Figure 5: Phase II Surface Collection Map Area D (18CV271/272)................ 56
Figure 6: Plan of Features 1, 2, and 4... 57
Figure 7: Profile of Feature 4... 58
Figure 8: Plan map Feature 3 and Postmolds A-D.. 59
Figure 9: Graph of Selby Bay Length/width Ratio.. 60
Figure 10: Graph of Piscataway Length/width Ratio... 61
Figure 11: Comparative Graph Selby Bay/Pisctaway Length/width................. 62
Figure 12: Graph of Pottery Type Totals by Features...................................... 63
Figure 13: Drawing, Mockley Cord Marked Vessel from Feature 3................. 64
Figure 14: Graph of Rim Orifice Diameters by Type.. 65
Figure 15: Plan and Profile Feature 6... 66
Figure 16: Profile of Feature 3... 67
Figure 17: Post Molds A-D Plans and Profiles.. 68
Figure 18: Gravel Stain I Plan and Profile... 69
Figure 19: Plan and Profile Features 17 and 11... 70
Figure 20: Plan and Profile Features 7 and 8.. 71
Figure 21: Plan and Profile Features 23, 24 and 26.. 72
Figure 22: Plan and Profile Feature 27... 73
Figure 23: Schematic Plan with Site Cross Section.. 74
Table 1: Lithic Artifacts by functional category and Provenience............. 76
Table 2: Length/Width Measurements Piscataway and Selby Bay Points..77
Table 3: Presence/Absence of Cortex on Flakes by Provenience.............. 78
Table 4: Flake Length Measurements by Material and Provenience.......... 79
Table 5: Ceramic Types by Provenience... 80
Table 6: Flake Count by Material and Level Feature 3.......................... 81
Table 7: Food Remains Comparisons by Level Feature 3...................... 35
Table 8: Food Remains Comparisons Features 1, 2, 4, 6 and 27.............. 37
List of Plates

Plate 1: Aerial of Patuxent Point... 83
Plate 2: Ground Level Shot of 18CV272.. 84
Plate 3: Profile of Feature 3... 86
Plate 4: Feature 3 after Excavations... 87
Plate 5: Projectile Points from Phase II Investigations............................... 89
Plate 6: Projectile Points from Phase III Investigation.............................. 91
Plate 7: Mockley Cord Marked and Mockley Plain Rims 18CV272......... 92
Introduction

This report presents the results of Phase III archeological investigations conducted at 18CV272, a Middle Woodland Mockley phase component situated approximately two miles north of Solomons, Maryland, on the east side of the Patuxent River adjacent to a spring head near the headwaters of Hungerford Creek, a small tributary of the Patuxent (Figures 1 and 2, Plate 1). The project was necessitated because of the Patuxent Point residential development project undertaken by CRJ, Associates of Camp Springs, Maryland, and requirements established by Calvert County regarding impact to archeological resources in the county. The overall project (Figure 3) comprised approximately 90 acres of which 18CV272 was only a small part of Area D. Phase I work by Otter (1987) located 18CV271 and 272. Follow-up Phase II investigations by Thunderbird Archeological Associates (TAA) defined two other sites, 18CV278 and 279 in addition to further refining the definition of 18CV272 (Gardner 1987). The Phase III work was undertaken by TAA during July, 1988, and resulted in the recovery of additional features and what appears to be the complete, or nearly so, plan (Figure 4) of a Middle Woodland II Mockley Phase settlement. Dr. William M. Gardner served as principal investigator. William P. Barse and Carole Nash were supervisors. CRJ Associates provided funding for all phases of archeological study. The Phase I (Otter 1987) and II (Gardner 1987) investigations are reviewed in this report and the feature and artifact information from the Phase II study at 18CV272 are incorporated into the site analysis.

Environmental Setting

18CV272 is located near the head of a small first order stream and a springhead tributary to Hungerford Creek (Plate 2). The distance from the site to Hungerford Creek is close to 600 feet. It is another 200-300 feet from the stream's mouth to the confluence of Hungerford Creek with the Patuxent. Hungerford Creek is an embayed stream, tidal and saline at this junction. The area supported oysters in historic times. The stream on which the site is located was probably also tidal near its mouth. The oysters and other shellfish which are so common at the site could only have been procured here or along Hungerford Creek, a distance of few hundred feet from where their remains were deposited. At the time of the investigation the
site area was in a recently abandoned agricultural field. Out of the stream valleys, the terrain is one of low relief. The highest point in the field is the area where Feature 3 (see Figure 23) was located. The site slopes gradually southward toward the loci of Features 2-6. To the north and west of the Feature 3 area, the terrain is essentially level. At the western edge of the site, the drop-off to the stream gulley below is abrupt. Townhouses, roads, parking areas and lawn adorn the current landscape.

Previous Work

The Phase I Study

18CV272 was first located by Otter in March 1987 during a Phase I level reconnaissance of a 16-acre portion of the Patuxent Point property. This study area, later designated by T.A.A. as 'Area D' (Gardner 1987; see also Figure 3, this report) was plowed in seven strips which were placed ca 65-100 feet apart; Otter conducted a surface survey of the strips which he divided into 20 x 20-foot units. The wooded area surrounding the field could not be surface surveyed; consequently, a series of shovel tests was placed to determine if any cultural material was present. In addition, shovel tests were placed in the plowed areas to "determine the integrity of cultural deposits identified by the surface survey" (Otter, 1987:18).

As a result of his studies, Otter identified two archeological sites: 18CV271, an historic site which he thought to date to the late 19th and 20th centuries based on a cursory survey of historic maps detailing the project area; and 18CV272, a multicomponent prehistoric and historic site. This latter site produced historic artifacts which Otter dated to the late 19th and 20th centuries, as well as prehistoric ceramics, lithic artifacts (flakes, cores, bifaces, and fire cracked rock), and projectile points which he dated from 2000 B.C. to 1600 A.D. (ibid:19). He noted that the prehistoric materials were concentrated "around the ravine at the north end of the tract" (ibid) and were not scattered throughout the entire field. The north end of the property also revealed five subsurface features which were indicated by the presence of oyster shell concentrations on the plowed surfaces. Shovel tests into these features revealed preserved deposits of faunal material (bone and shell) in two of them, as well as ceramics and lithic artifacts. Otter identified these features as being located in areas of isolated Late Woodland and Middle Woodland period activity (ibid:21). The more intensive...
Phase II and III studies showed the prehistoric materials to belong to two primary components, both Middle Woodland in Gardner's definition, and perhaps overlapping in time. These are a Piscataway phase component, defined by contracting stem Piscataway points, and a Mockley phase occupation, defined by Mockley shell tempered pottery and rhyolite Selby Bay style points. Minor traces of Early Woodland III Accokeek ceramics and Middle Woodland I Popes Creek ware as well as a single Late Woodland Rappahannock Fabric Impressed sherd were recovered during the intensive Phase III investigations.

Otter's 20-foot collection units did not individually yield large numbers of artifacts, the maximum number from any one unit being between five and ten. In fact, the majority of the units did not contain any artifacts, and those which did contained only one or two. Quartz was the raw material which dominated the lithic assemblage, with quartzite following; chert and rhyolite debitage was rare. Otter noted that the intact subsurface features contained "organic materials (which are) preserved and recoverable" (Otter 1987:29), and given that such features provide important information for understanding the cultural processes of past populations, the site's research potential and significance were great. He felt that if the site could not be preserved, it should be investigated more thoroughly prior to the planned construction in the area, particularly since the type of information the site might yield is "scant in Southern Maryland" (ibid:29-30). Toward this end, he recommended the entire site be plowed, systematically collected and site boundaries and components better defined. He also recommended all features be excavated and the contents analyzed, and that the site be mapped.

The Phase II Study

TAE archeologists began the Phase II investigations at 18CV272 in June 1987, and were able to locate only four of Otter's five features; in the interval between the two studies the field had become overgrown. Surface concentrations of shell were used to relocate the features, which were fully defined after the removal of the plow zone. This initial process of definition revealed that the pits were larger than previously thought. In consultation with Dennis Pogue, the Southern Maryland Regional Preservation Officer at that time, it was decided that the area of the field in which 18CV271 and 18CV272 were located would be plowed, gridded, and systematically
collected. This work was undertaken in conjunction with the systematic surface collection of much of the remainder of the 90-acre development. Within this larger tract, the areas were labeled A, B, and C. respectively. Area C was not collected. The Area A study resulted in the discovery of two additional sites, 18CV278 and 279. The latter was a 17th century house site subsequently excavated by another group. 18CV278 was an ill defined prehistoric artifact and shell scatter with both Piscataway and Selby Bay artifacts. No further work was conducted at this location. The Phase II study at these two sites will not be discussed further, except as the findings from 18CV278 relate to the interpretation of 18CV272.

Surface Collection 18CV271/272

After plowing, Area D was gridded into 20' x 20' collection units. Echoing Otter's study, these units yielded relatively few artifacts, which may have been a function of drought and the resulting low artifact visibility. However, as Gardner noted, "low artifact yield may be a characteristic of sites of this nature" (1987:16). Figure 5 illustrates the distribution of artifacts from the surface collection; only one square contained more than six artifacts, and most contained less than five. Figure 5 also illustrates the denser concentrations of surface-collected artifacts in relation to the features; there is little spatial correlation between them.

The most common projectile point/biface form recovered during the surface collection was the Piscataway, six of which were recovered from the northern and eastern areas of the study area. Of these, three came from near the Phase III study area. All of the Piscataway points recovered in the surface collection were manufactured from quartz. Quartz bifaces, most of which probably correspond to Piscataway preforms, were quite common. These were concentrated in the northern portion of the study area with eight coming from the Phase III study area. Four rhyolite Selby Bay points and/or bifaces were recovered with none coming from the Phase III study area. Also of interest is an untyped quartz contracting stem form, associated by Wright (1973:Figure 11) with the Accokeek phase. No prehistoric ceramics were recovered from the surface collection.

Other lithic artifacts collected included flakes, bifaces, scrapers, cores, and chunks of raw material. Quartz was the dominant raw material of this
assemblage, with quartzite, rhyolite, chert, and jasper being represented in small numbers. Flakes were the most common artifact type from Area D, comprising 65% of the total assemblage.

Features

The features excavated during the Phase II study were Features 1, 2, and 4 (Figure 6) in what later became the Southern Feature Cluster. All the features were found to contain layers of densely packed oyster shell and were basin-shaped in profile. Feature 3 (Plates 3 and 4) was only partially tested during the Phase II study and its plan and profile were not known until the Phase III study. Features 1 and 2 exhibited only one level of fill (shell), but varied in depth from 1.7' to 2.6', respectively, below the surface of the field. In plan, Feature 4 was almost twice the size of the first two features, and extended to a maximum depth of 2.3' below the field surface (Figure 7). It exhibited several lenses of fill, including organic soil and shell. The boundaries of Feature 3 were difficult to define; an oyster shell level of pit fill was excavated, and a much larger stain exposed upon the removal of the surrounding plow zone. It was interpreted as a probable complex of pits which intruded into each other.

The diagnostic ceramics recovered from these features indicate a Mockley phase occupation with two exceptions. The plow zone over Feature 2 contained a sand tempered net marked sherd (probably a Pope's Creek variant), and the plow zone over Feature 4 contained a sand tempered Accokeek Cord Marked sherd. Feature 1 was the only feature which did not contain any ceramics.

No temporally diagnostic projectile points were recovered from the features. The debitage consisted predominantly of rhyolite in two of the three pits, with flakes being the most common artifact. Other types of lithic artifacts recovered include bifaces, hammerstones, and chunks of raw material. As noted in the Phase II report, the quantity of lithic material was surprisingly low considering the presence of the pits.

Seasonality studies were conducted on samples of the oyster shell from the features by Keith Doms. This analysis showed that a high percentage of these were procured between September and December. Faunal analysis revealed the presence of deer, striped skunk, opossum, box turtle, untyped
fish, and woodland vole with Feature 4 containing the majority of these remains. An almost complete dog skeleton was recovered from Feature 4, and, lacking evidence of butchering, was presumed to be a burial. Other faunal remains include soft shell clam and stout razor shell clam.

There was little evidence of burning in the pits; small fragments of charred wood were recovered from the water screening and flotation, but fire cracked rocks were rare, no lenses of burned soil were noted in any of the features, and none of the large mammal bones appeared to have been burned. There was little evidence of burned oyster shell in any of the pits, and no evidence to suggest the pits were used for cooking. Storage was assumed to be the primary purpose of the larger pits.

Site Interpretation

A single Palmer Corner-Notched point provided evidence for Area D's earliest occupation. The next temporal diagnostic was the Early Woodland Contracting Stemmed point assignable to the Accokeek phase. Based on the ceramics and the artifact-bearing strata, Features 1 through 4 were interpreted as representing a single component Mockley phase occupation. This portion of the site was interpreted as a seasonally-occupied base camp; the low number of artifacts recovered is taken as evidence for a seasonal (probably fall and winter), as opposed to a long-term, occupation.

As noted in the Phase II report of 18CV272, it was not possible to link the shell filled pit features with the occupation represented by the surface collection without equivocation. The pit features yielded no diagnostic lithic artifacts and the surface collection was virtually devoid of prehistoric ceramics. Selby Bay points, the use of rhyolite, and Mockley ceramics are hallmarks of the Selby Bay phase (Mayr 1972, Wright 1973), as are the exploitation of mollusks. Rhyolite bifaces and Selby Bay points were recovered during the controlled surface collection, and several of the features, particularly Feature 3, contained rhyolite debitage. It was noted that the presence of rhyolite in the features and on the surface provided the only link between the features and the surface collection.

One hypothesis offered in the Phase II report was that the Piscataway component located in the northern and eastern areas of the site during the controlled surface collection was apparently unrelated to the Mockley
component. Alternatively, it was suggested the Piscataway surface manifestations and the Mockley sub-surface elements could all be part of the same complex. This interpretation was based on several factors, including: "the juxtaposition of assemblages, the absence of a ceramic assemblage to tie in with the Piscataway occupation, and the ...low artifact count and variability in Features 1-4 for the Mockley component..." (Gardner 1987:22). An unanswered question concerned the association of Piscataway projectile points and bifaces with the Selby Bay lithic component, if there was one. If there was no association, then "the Piscataway component, or components, may be composed of one or more basically aceramic occupations" (Gardner, ibid:22). An aceramic, or low ceramic use, Piscataway occupation would have been characterized by a different subsistence base and site use than would have a Mockley occupation with large numbers of ceramics and pits; possibly the former would have been a series of hunting encampments, as opposed to the base camp function of the latter.

The Phase III Study

A number of recommendations concerning 18CV272 were made in meetings with officials of the Southern Maryland Regional Preservation Office, in various memos, and in the final report of the Phase II research. It was decided to strip the plow zone from selected portions of the site in order to expose post molds and other sub-surface features associated with a community pattern. It was believed that this also would contribute more data on the relationship between the Piscataway and Mockley assemblages. Plow zone stripping was to be undertaken in those areas which the 1987 controlled surface collection had shown to be loci of relatively high artifact density. "Relatively" must be stressed here because the artifact count range per 20-foot collecting unit was 1-7 inclusive of fire-cracked rock, flakes, core fragments, chunks, bifaces, pottery, and projectile points. Excavation decisions would be made in the field after features were located. Because of various monetary considerations, the final proposal was focused on stripping and mapping. Data recovery from features was to be kept at a minimum with feature excavation to be determined by which pits were likely to yeild the maximum information. As will be noted below, even this reduced version of the original methodology was reduced further.
Methodology

Field Investigations

In order to locate the areas of high artifact density as determined by the 1987 controlled surface collection, the original grid was re-established at the site before Phase III investigations were undertaken. During a field visit in early June 1988, the oyster shell features excavated in 1987 as well as a few of the original grid stakes were relocated, and these guided the grid re-establishment. A north-south oriented base-line was established along the western edge of the field, and an east-west oriented base-line was established in the area of the shell pits. These base-lines horizontally controlled all subsequent work in the field.

Prior to Phase III investigations, 1' x 1' shovel tests were placed across 18CV272 in order to determine the depth of the plow zone. This information was later used to guide the mechanical stripping procedures at the site. Generally, the shovel tests revealed an average plow zone depth of .8', with a deeper plow zone recognized in areas of slope, especially near the ravine south of the site. Most of the tests also revealed two plowzones: a light yellow loam with a high sand content extending from the surface to ca .4, and a buried light brown loam with increasing amounts of clay extending from ca .4' to .8'. The B horizon below these plow zones is generally mottled brown and yellow and exhibits a high clay content.

Because the heavy machinery required for the plow zone stripping could not be provided by the contractor at the beginning of the fieldwork in late June 1988, it was decided that the TAA crew would begin the Phase III investigations by re-locating Feature 3, the oyster pit only partially excavated during the 1987 field investigations. It was felt that this known subsurface feature would be an appropriate point of departure for the field work, as the 1987 excavations indicated that it contained cultural-temporal information which would contribute to the understanding of the occupation(s), as well as to that of the community patterning. The excavated portion of Feature 3 had been covered with plastic and backfilled after its initial testing, and the surface of the exposed, unexcavated portion was similarly treated. The 1988 field work began with the hand-removal of the plow zone and backfill in the general area of the feature. The plow zone was
not screened, but artifacts noted during the hand excavation were bagged. Since the 1987 work at 18CV272 did not allow for the complete definition of the boundaries of this feature the immediate goal of the 1988 plow zone removal was this definition. A roughly circular stain ca 10' in diameter was exposed (Figure 8), and shovel scraping in the immediate area surrounding the feature revealed four smaller circular stains. These were all mapped and photographed.

Given the condition of the soil due to a dearth of precipitation, as well as the delay in the equipment, it was decided to begin the excavation of Feature 3 in order to discern stratigraphy, recover cultural materials, and retrieve environmental information which would add to that recovered in Phase II excavations of Features 1, 2, and 4. Toward this end, the feature was divided into quadrants, the northeastern section having been initially tested in 1987. The excavation of this quadrant was undertaken first, and it was used to guide the excavation of the remaining quadrants. The natural stratigraphy of the feature fill was followed in the excavation; it was removed by troweling and dry screened through 3/8" hardware cloth. A detailed map of the stratigraphy of each profile cut was drawn, and photographs were taken. Artifacts were bagged according to provenience. All bone, charcoal, nuts, and larger sherds of pottery were immediately wrapped in aluminum foil for protection, the charcoal being collected for radio-carbon dating. In addition, 2.5 gallon samples of soil were taken from selected levels for waterscreening and flotation, which was completed at TAA laboratory facilities. Shells were not collected in the dry screened portion of the quadrants, and were not analyzed from the water screened portions.

In addition to the excavation of Feature 3, TAA crew members dug several test pits and trenches at various locations across 18CV272, and investigated the surface of the field for oyster shell concentrations which might be indicative of other subsurface features. One such concentration, Feature 5, was located, and further testing revealed that it was a smear of shell confined to the plow zone, with almost no portion extending into the subsoil. The test pits, 2' x 2' in size, and the trenches of varying dimensions were excavated according to their natural stratigraphy, their contents being screened through 3/8" hardware cloth. No water screening samples were taken from these test units, but all artifacts were bagged according to provenience, and appropriate items were protected in aluminum foil.
In consultation with the Southern Maryland Regional Archeologist and the absence of an alternative, TAA agreed to the removal of the plow zone by a large pan with an 8-foot wide blade. In early July the surface of the field had been disturbed by a front-end loader clearing trees and brush, but as the site had sustained no damage below the plow zone, it was thought that the stripping procedure as outlined in the proposal would still be appropriate. However, due to time constraints and equipment shortages, the contractor could not provide the machinery for the amount of time necessary to strip all of the area proposed by TAA, so the areas immediately west and south of Feature 3 were chosen as the focus of the stripping, given the known presence of subsurface features in these areas. To the west, a trench approximately one blade-width wide and 75' long was cut by the pan, which made several passes, removing ca 2" in depth with each pass. This was repeated to the south, where several trenches, roughly 125' long, were cut. No unopened areas were left between these trenches to the south of Feature 3; at this time no areas to the east or north of Feature 3 were stripped of their plow zone, except by hand. Once the machine had removed the plow zone, TAA crew members shovel-skimmed the trenches in order to locate any stains. A total of 20 potential features were located in this manner. Their boundaries were outlined, mapped, and they were moistened with water and covered. Excavation decisions were made after the cleaning process was completed.

To the west, a protective balk of ca 12' was left around Feature 3; to the south, a balk of ca 6' remained after the stripping. It was thought that after the excavation and mapping of Feature 3 was completed the heavy machinery would remove these balks. However, continuing scheduling difficulties resulted in this not occurring until the final afternoon in the field; in the meantime, a portion of the western balk was removed by hand, and four additional features were located. These were also outlined, mapped, moistened, and covered. Given the small size of most of the 24 features, it was decided that they would all be bisected and photographed, as necessary; several were discovered to be plow scars and machine smears. One large stain, Feature 6, was located in the southwest portion of the field, in the general vicinity of Features 1, 2, and 4. This was bisected, the northern half being excavated according to natural stratigraphic levels, and all soil was dry-screened through 3/8" hardware cloth. A 2.5 gallon soil sample was taken for water screening and flotation, which was completed at T.A.A. laboratory facilities. Artifacts and other remains were treated as those
from Feature 3. The southern half was excavated as one level.

On the final afternoon of the scheduled field work, a bulldozer with an 8' wide blade completed the stripping around Feature 3, removing all of the balks and opening an area to the northeast of the feature. Two smaller circular stains were revealed by these cuts, as well as a larger stain with oyster shell on its surface. These stains, Features 25, 26, and 27, were the last located during the Phase III investigations at 18CV272. All were defined, mapped, and bisected; the southern half of Feature 27 was excavated as one level, with all soil being dry-screened through 3/8" hardware cloth and a 2.5 gallon sample being taken for waterscreening and flotation.

Altogether, through both hand and mechanical means, plow zone was removed in an area roughly measuring 80 feet north-south by 140 feet east-west, or 11,200 square feet.

Laboratory Analysis

The artifacts from the excavations were initially segregated by material, with the major analytic categories being lithics, ceramics, charcoal, and bone. No shell analysis was done for the Phase III excavations. The lithics were further segregated by morphological and functional characteristics, with the initial sorting procedure involving a division into debitage, tool, and fire-cracked rock. Debitage included cores, generally evidencing bifacial modification; chunks, which are probably small core fragments, but possibly by-products of the reduction process such as blocky shatter or blocky flakes; and flakes. These categories were further segregated by raw material and analyzed for evidence of cobble cortex. The length of whole flakes (those exhibiting a striking platform and termination) was measured in millimeters with calipers.

The tool category included projectile points, preforms/bifaces, hammerstones, and utilized flakes; bifaces and preforms were included in this category despite the fact that they are not necessarily tools. The length, width, and thickness of projectile points, bifaces, and preforms was measured in millimeters with calipers so that statements could be made about reduction sequences. All tools were further segregated by raw material. For both the debitage and tools, raw materials include quartz,
quartzite, argillite, chalcedony, and metarhyolites, jaspers, and cherts of varying colors.

The ceramics were first divided by temper, including shell and sand/crushed rock (quartz and ferruginous sandstone) and then by surface treatment, including fabric impressed, net impressed, cord marked, and plain. Sherds were also counted according to their vessel position; either rim or body. Obvious mends between sherds were noted, and some rim reconstructions made. When possible, orifices of vessels were measured and a minimum number of vessels proposed. Many fragments were too small to analyze beyond temper. Usually, these were less than 10 mm. in size and were catalogued as "crumbs". These fragments are not included in the discussion of ceramics in the report.

Based on the laboratory analysis, six types of ceramics were found to be present at 18CV272: Rappahannock Fabric Impressed, Mockley Net Impressed, Mockley Cord Marked, Mockley Plain, Accokeek Cord Marked, and Pope's Creek Net Marked. In addition, some sherds of sand/crushed rock temper whose surface treatment could not be discerned were noted; these were catalogued as Accokeek.

The faunal remains were analyzed by species and age, where possible. In addition, these were analyzed for evidence of butchering, as well as modification for tool use. This analysis is presented in Appendix I along with the analysis of the 1987 faunal material in Appendix II and the shell analysis from the 1987 study in Appendix III. Charcoal was separated into the categories of wood and nut fragments. Two charcoal samples, one from the 1987 excavation of Feature 4 and one from the 1988 excavation of Feature 3 (see below) were tested by Beta Analytic. Three types of nut fragments were noted: hickory nut, acorn, and walnut, with the first comprising the overwhelming majority.

Samples of pit fill from Features 3, 6, and 27 were waterscreened through window screen (1/16" mesh) at T.A.A. laboratory facilities and separated by material: lithics, ceramics, charcoal, bone, and nut fragments. At this writing, the smaller residue has yet to be separated, but it is expected that these categories will also govern this analysis. Also, flotation techniques were implemented to recover extremely light artifacts such as bone, charcoal, and seeds. This too has yet to be analyzed.
The site records, artifacts and notes, as well as the results of the laboratory analysis, will be on repository at the Southern Maryland Regional Preservation Office and available to anyone wishing to examine them.

Results

Lithic Analysis

Lithics comprise the largest single artifact category from the site. The totals, by functional class and provenience are presented in Table 1. The greatest number of lithics came from the surface collection. This figure is misleading in terms of activity foci since the area of the surface collection was spatially extensive without significant concentrations: the highest debitage totals in any single 400 square foot collecting unit in either 18CV271 or 272 was only 7 (Figure 5). In contrast, Feature 3 contained more lithic artifacts than the total from the entire controlled surface collected area in the stripped area of 18CV272. On the other hand, the other pit features were more similar to the surface distribution in containing low artifact densities.

The highest percentage of lithics was derived from the manufacture or modification of stone tools and included flakes, chunks or core fragments, bifaces, cores and hammerstones. The only prepared tools recovered were projectile points. Significant in their absence are scrapers, drills, knives, etc. There were also very few utilized flakes, although caution must be exercised here since short term use is difficult to determine on quartz, and this was the major lithic material represented in the inventory. Overall, exclusive of the lithic tool manufacturing/modification elements, the recovered lithic assemblage was composed of expedient tools employed for short duration as opposed to prepared or curated items.

Virtually all of the projectile points from 18CV271 and 272 (and nearby 18CV278) were assignable to the Selby Bay and Piscataway types (Plates 5 and 6). The Selby Bay points and bifaces were all manufactured of non-local materials while the Piscataway points were of material which is locally available in cobbles (Table 2). With the single exception of an argillite
specimen from Feature 3, all of the Selby Bay points were made of rhyolite. The rhyolite source is assumed to be in the Blue Ridge between Gettysburg and Harpers Ferry. All but two of the Piscataway points were made of quartz; the exceptions are made of quartzite and jasper and both came from Feature 3. As can be seen in Table 3, much of the quartz, jasper and quartzite debitage has cobble cortex suggesting all of the Piscataway points were locally manufactured of local materials. Conversely, none of the rhyolite debitage has cobble cortex.

Length measurements taken on whole rhyolite and quartz flakes show the ranges for the two are essentially the same (Table 4). Since almost one-third of the quartz flakes are decortication flakes, the size range for quartz flakes is most likely controlled by the size of the cobbles being reduced. Rhyolite debitage size, on the other hand, would have been controlled by the size of the preforms or finished points imported into the site. Many rhyolite flakes also show a number of flake scars on the dorsal surface. This, coupled with the size range of the flakes, indicates late stage preforms. The absence of argillite debitage indicates this argillite biface or point was imported into the site completed.

Figure 9 graphs the length-width measurements of the sample of Selby Bay points from the three sites. The lengths are relatively consistent, with most varying within a range of 20mm. Widths are even more consistent with most confined within a 10mm range. These measurements are in agreement with the late stage biface interpretation presented above and indicate a relatively standardized biface size. The graph also demonstrates a relationship between length and width. In general, as the length of the point increases so does the width. Figure 10 provides a similar graphic for Piscataway points. The width of this style is very narrowly confined. This observation was also made in the Phase II report (Gardner 1987:16). It was also noted that most of the quartz preforms or bifaces (14/20 or 70%) recovered from Area D, which included both 18CV271 and 272, fell within a restricted length range of between 27-39 mm which is almost exactly inclusive of the range of Piscataway points. This is a further indication of the interpretation that the Piscataway points were being locally made. The length of the Piscataway points, however, shows much greater variation. There also seems to be little covariation between length and width and, no matter how long or short the point, its width remains relatively constant. Table 5 contrasts these two measurements for the different types while
Figure 11 presents this in a graphic display. Overall, Selby Bay styles are larger both in terms of length and width, with the latter more nearly comparable than the former.

Ceramics

Including unidentifiable fragments, a total of 632 sherds were recovered from the features in the 1987 and 1988 excavations at 18CV272 (Table 5). Of these, 599, or nearly 95%, were Mockley Ware, 26 Accokeek Ware, 4 Pope's Creek Ware, and 1 Rappahannock Fabric Impressed. As was the case in the 1987 work at the site, no sherds were recovered from the surface; all were found within the context of features.

The majority of sherds were relatively, small measuring less than 50 mm across. A few much larger Mockley sherds, and in certain instances considerable portions of vessels, were recovered. Some of these larger Mockley sherds were deteriorating at the time of excavation and efforts to remove them in one piece were unsuccessful; in these cases, attempts were made to reconstruct the sherds in the laboratory, some of which were successful. At this point in time, only limited efforts have been made to reconstruct vessels, and, as evidenced in the feature discussions, minimum number of vessel designations have been made only on the basis of rim fragments.

Mockley Net Impressed sherds comprise the majority of the Mockley ware assemblage (Table 5, Figure 12). Excluding the unidentifiable shell tempered fragments, they total 147, or 39% of all ceramics and 43% of the Mockley assemblage. The type was recovered from all features except Feature 1, which contained no ceramics. The net impressions vary considerably in fineness and in knot prominence; the shell temper (which appears to be oyster) varies in size, some being finely ground and some being coarse. The paste generally exhibits a high clay content, but a few of the sherds contain small fragments of ferruginous sandstone or quartz. In addition, sherds vary in thickness, with the rim sherds generally being thinner than body sherds. This latter observation, however, is made based on a very small sample of rim sherds; only 12 of the sherds of this type were from rims, the remainder being from vessel bodies. One body sherd had a drilled mend hole.

Six of the eight reconstructed rims from the site which were large
enough to allow vessel orifice measurements were Mockley Net Impressed. Feature 3 yielded Mockley Net Impressed rims from vessels with orifices of 30 cm, 38-40 cm, and 42 cm; Feature 6 yielded a vessel with an orifice of 41 cm; and Feature 27 yielded a vessel with an orifice of 40-42 cm. Feature 2 had one Mockley Net Impressed rim with an orifice of 34 cm. All of these rims except two evidenced net impressing onto the lip; the 38-40 cm and the 34 cm rims had smoothed lips. All of the rims are straight. The volume or the shape of these vessels is not known, but one large vessel fragment recovered intact from Feature 6 was at least 31 cm in length from the rim toward the base.

Mockley Cord Marked sherds (82, or 21% of the total and 24% of the Mockley ware) and Mockley Plain sherds (113, or 30% of the total and 33% of the Mockley assemblage) comprise the remainder of the Mockley Ware from the site. Features 6 and 27 did not contain any of the former, and Feature 6 was also devoid of Mockley Plain. The cord marking varies both in the thickness of the textile and the spacing across the sherd; on the plain sherds, the quality of the smoothing varies, with some being rough and some being very even. The size and content of the temper is variable in these two types. In a few instances, some of the cord marked and plain sherds appear to be more highly fired than those that are net impressed.

Feature 3 also contained significant portions of a vessel in which cord marking extends from one third to one half down the vessel wall (Figure 13 and Plate 7). The area below is smoothed. The mouth of the vessel flares out and it has the slightest of shoulders. It is at this slight shoulder the cord marking terminates. Typologically, then, this vessel could be considered to be one half Mockley Cord marked and one half Mockley Plain. In terms of recovered sherds belonging to this vessel, 10 sherds can be typed as Mockley Cord Marked while 31 fall into the Mockley Plain category. The orifice diameter on this vessel is 28 cm. The vessel is rather shallow with the measurable vertical portion 9.4 cm. from the rim to at or near the curve toward the base. Only two other cord marked sherds were from rims. In one of these, the cord-wrapped paddle was applied horizontally just below the lip, which was smoothed.

Only three plain rim sherds were noted in the assemblage; two were large enough to allow for measurement. Feature 3 contained fragments of a small, thin, highly fired vessel with an orifice of 10 cm, while the gravel
stain to the north of the feature contained a similar small vessel with an orifice of 14 cm. These two rim sherds were not from the same vessel; their diameters were different, as was their color; and the rim sherd from the gravel stain evidenced a great deal of soot on its interior. Both are tentatively interpreted as cups. These thin relatively well made 'cups' are Mockley Plain, although as described by Stephenson, the vessel size differs considerably from that noted by him.

Stephenson notes the same vessel orifice diameter range for all three types of Mockley. Our analysis, admittedly on a much smaller sample, shows considerable difference (Figure 14). At the lowest end of the range are the Mockley Plain vessels with the two samples at 10 and 14 cm. The single measurable example of a Mockley Cord Marked vessel falls at 28 cm. In contrast, all of the Mockley Net Marked rims fall between 38-42 cm. In the ceramic sample from the site, then, Mockley Net Marked sherds contain the widest diameter openings. Whether or not this indicates greater volume is not known. It is suggestive of such, however, and supporting this is the contrast between the two vessels in which rim-to-base depths could be ascertained. In the cord marked example noted above, this distance was only 9.4 cm while in the net impressed sample this measurement was at least 31 cm. In this instance then, the Mockley Net Impressed vessel has an orifice opening 1.75 times as large and a vertical depth which is three times greater that the cord marked specimen. The greater volume would also be expected to coincide with greater overall thickness of the sherds because of internal pressure which is the case when Mockley Net Marked sherds are compared with the Mockley Cord Marked (however, see discussion below for a qualification of this). Again, while the sample is small, this kind of size differential is suggestive of functional differences between the three types.

As mentioned above, the general observation can be made that the Mockley Net Impressed sherds are thicker than the Mockley Cord Marked sherds, but as Gardner (1987:19) observed in the Phase I, it is difficult to quantify this without observations on comparable portions of vessels. This statement regarding comparative thickness also also holds true for the Mockley Plain, at least when actual Mockley Plain vessels are being compared, as in the cup forms. However, since many of the Mockley Plain sherds are from the lower portion of the vessels, indeed quite often from the very base, they tend to be much thicker, by and large, than either Mockley Net Impressed or Mockley Cord Marked. Feature 27 yielded a "Mockley Plain" basal sherd which is very
thick (14.6 mm); other sherds recovered with it are also thick. It is probable that the thick, plain sherds represent the bases of vessels which have either cord marked or net impressed rims and bodies.

The figures for Mockley surface treatments are misleading. For Mockley Plain, there are only two demonstrably plain vessels and both of these, as noted, were from cups, or shallow miniature vessels. Most of the remainder of the plain sherds came from vessel portions toward or at the base, or from vessels which were demonstrably cord marked above the area where the smoothing began. As noted above, the individual sherds from a single vessel with both cord marked and plain surfaces could be typed into 10 Mockley Cord Marked and 31 Mockley Plain. This is a 3:1 ratio in favor of the former which is more than the ca 1.75:1 ratio in the total sherd count. Both are indicative of the bias.

Looking at the rims only, there was a maximum potential total of 23 vessels. This could probably be reduced, especially in the Mockley Net Impressed category from Feature 3, but the absence of connecting links in mends leaves us with this potential number of individual vessels. Of these, 17 or almost 75% are Mockley Net Impressed, 3 or 13% are Mockley Cord Marked, and 3 or 13% are Mockley Plain.

Accokeek ceramics were present in Features 3, 4, 6, and the gravel stain, but in small numbers. They were not concentrated in any of the layers of Feature 3, but were evident throughout. In all cases, the Accokeek sherds were found in context with Mockley sherds and there were no pure associations. The majority of the Accokeek sherds are small, badly deteriorated and surface treatment is difficult to discern, but a few evidence cord marking. The paste contains small amounts of grit and crushed quartz, which is described by Stephenson (1963:97) as characteristic, but the temper is predominantly sand. The two rim sherds which are included in the Accokeek category are too small to yield vessel orifice diameters. Traces of Accokeek pottery were discovered in other areas of the Patuxent Point project (Gardner 1987).

Six Pope's Creek sherds were recovered from Feature 3 and the gravel stain. As with the Accokeek sherds, the Pope's Creek sherds are so small and badly deteriorated that it is difficult to discern surface treatment. Faint net impressions are visible on most of these, however. Temper
includes small quartz pebbles and grit. All of the Pope's Creek sherds are from vessel bodies and are relatively thick in comparison to the Accokeek sherds. Pope's Creek pottery was present in the other areas studied but was quite rare.

One small body sherd of Rappahannock Fabric Impressed was recovered from Layer I of Feature 3. This was the only sherd of this type recovered in anywhere on Patuxent Point.

Features

Several stains, numbered as 7, 9-10, 12-16, 18-22, were initially identified as features but were found to be portions of plowscars, areas where the plow zone had not been completely removed, or roots. These are not included on the map but their rejection and the retention of the original numbers account for the lack of consecutive numbering in the retained features. The site plan map (Figure 4) shows the distribution of the accepted features. There are three definite clusters: the southern and northwestern clusters and the Feature 3 complex. More isolated features include Features 17 and 27. This section of the report describes the features and the discussion follows this spatial pattern. Feature 1-4, which comprise the features discovered in 1987, Postmolds A-D, Gravel Stain 2 and the features in the northwestern cluster were found through hand excavation. The remaining features from the 1988 work were discovered as a result of the machine stripping. All of the features from both the 1987 and 1988 excavations were defined at the base of the plow zone. The plow zone depth varied between .6' and 1.1', with with the more shallow range of depths along the crest of the field in north of and in the vicinity of Feature 3.

The Southern Feature Cluster

The Southern Feature Cluster consists of four pits, Features 1, 2, 4 and 6; a shell smear or very shallow concentration of broken shells, Feature 5; and Feature 11, which may be the base of a post mold. Feature 5 appears to be historic in origin. Features 1, 2 and 4 were excavated in the 1987 Phase II study. The plan map for Features 1, 2 and 4 are presented in Figure 6, which is reproduced from the Phase II report.
Feature 1

Feature 1 was oval in plan with maximum dimensions of 4.75' by 3.4' (Figure 6). The plow zone over the feature was 1.1 feet in depth. As noted above, this area of the site is toward the bottom of a slight slope and erosional wash from the higher elevations have been deposited here. The fill consisted of tightly packed shell with little soil. In profile the pit was a trough shaped basin which extended to a maximum depth below the plow zone of .6'. The pit was located because of a concentration of shell on the surface of the ground indicating some of its higher definition had been lost to cultivation. A single quartz flake (Table 1) was the only artifact recovered from the feature. There was no evidence of burning or cooking and the original purpose of the pit is not known. The shallowness would seem to preclude storage.

Feature 2

Feature 2 was similar in most respects to Feature 1. It was irregularly oval in plan and tightly packed with shell, with horizontal dimensions of 4.3' by 3.4' (Figure 6). The cross-section revealed no differences in fill episodes. The plow zone over the pit was .8' deep and the pit reached a maximum depth of 1.8' below the plow zone. As with Feature 1, Feature 2 was discernible as a shell concentration on the surface. In contrast to Feature 1, Feature 2 contained ceramics (Table 5) including Mockley Net Impressed, Cord Marked, and Plain, as well as a single Pope's Creek Net Marked sherd. Debitage was present but not plentiful (Table 1). A quartz biface was also recovered. Again, the data provides no information on the original function of the pit if, as is likely, it was something other than shell disposal.

Feature 4

Feature 4 differed from its two neighbors discussed above in being larger in plan measuring 5.1' by 6.9' (Figure 6). It was also deeper, extending 2.3' below an .8' plow zone. The profile (Figure 7) exhibited a rather complex series of fill events, yet another difference between this feature and Features 1 and 2. Shell was present but was not nearly as compact in the lenses as in the fill of the other two pits. In some of its fill lenses, no shell was present. Despite the differences in size it exhibited the sparse lithic
artifact (Table 1) representation common to the smaller pits. A small number of rhyolite flakes were present thus linking the pit with Features 3, 6 and 27. A link is also provided by the Mockley pottery which, in contrast to the lithic assemblage, was quite large, constituting the second highest total at the site. All three variants of Mockley pottery were present (Table 5). In addition, a single sherd of Accokeek Cord Marked was recovered from the pit fill. The function of the feature is not known. Its size suggests storage. A radio-carbon assay on charcoal from the "shell and soil level" produced a reading of 900, or 1050 +/- 140 BP (Beta-27174). This is just outside of the known range of Mockley dates.

Feature 5

This stain, located near the southern edge of the site, was discovered prior to the removal of the plow zone by mechanical stripping. A concentration of broken oyster shell was noted on the ground surface in the general area of the feature, and hand excavation of the plow zone revealed a light brown stain, roughly 3' by 4' at its maximum dimensions, and circular on its eastern side. The surface of the feature below the plow zone was covered in broken oyster shell which did not extend into the fill. The feature fill was sandy in texture and mottled in color, containing pebbles, brick fragments, and roots. The plow zone overlying the feature was .9' deep and the fill itself extended .7' below this. Underlying the fill was a layer of light yellow sand and gravel, and it was later noted that the general vicinity had been affected by an erosional gully which carried water and soil to the ravine south of the site.

Both historic and prehistoric artifacts were recovered in the feature, although these were few in number. In addition to the brick fragments these include two badly rusted nail fragments which could not be identified further, and one quartzite flake. The overlying plow zone yielded two flakes of quartz and rhyolite. Given the presence of historic artifacts in the feature fill, Feature 5 is interpreted as a shell smear on top of a buried plow zone. It is probable that the broken shell on the surface of the feature was smeared by plowing activities in the field. The fact that the shell was broken and not intact, as it was in other features, signals its disturbance.
Feature 6

Feature 6 (Figure 15), an oval stain located near the southern edge of the site, had maximum dimensions of 4.7’ by 4.0’. As it was uncovered during the mechanical stripping activities, the depth of the plow zone overlying the feature is not known, but shovel tests in the area prior to the scraping indicated a depth of .8’. A well-defined base for the feature was difficult to discern due to the presence of a large tree root which disturbed the stratigraphy, but the profile indicated a fill depth of 1.1’ and a basin shape configuration. The feature fill was mottled in color, but two distinct layers were recognized; the dominant soils in the fill were brown loams containing charcoal fragments, while the surrounding matrix was that of an orange-red clay with sand and pebbles. There was no evidence of soil discoloration associated with heating. Unlike most of the larger features at 18CV272, Feature 6 contained only minimal amounts of oyster shell.

The ceramics (Table 5) from the north half of the feature consisted of a cluster of three large sherds of a single Mockley Net Impressed vessel. The south half of the feature contained prehistoric ceramics, including six smaller body sherds of Mockley Net Impressed and one rim sherd and three body sherds of Accokeek Cord Marked.

Lithic artifacts were rare in Feature 6 (Table 1); only three small flakes were recovered (2 quartz and 1 quartzite) with one of these being modified for use as a graver. A small, heavily used quartzite hammerstone was also recovered. The waterscreening of a sample of fill from the feature did not yield any lithics.

A single deer bone fragment was uncovered near the cluster of Mockley sherds in the north half of the feature, as well as some unidentifiable bone fragments. The waterscreening yielded a few of the latter, as well. No nut fragments were found in the flotation or waterscreening sample, and none were recovered in the excavation.

The original function of the feature is not known. It differs from the other features of its size at 18CV272, both in its lack of oyster shell and small assemblage of artifacts. There appear to have been two episodes of
feature fill, with the upper layer containing the majority of artifacts. The tree root disturbance affected the lower portion of the feature.

Feature 11

Feature 11 measured .7' by 1.1' (Figure 19), although its boundaries were difficult to determine on the surface. Bowl-shaped in profile, Feature 11 was very shallow, extending only .18' in depth. The stain was dark brown in color and contained several oyster shell fragments in profile. A small amount of charcoal was noted on the surface but not in the fill. No artifacts were recovered from the feature. The function of Feature 11 is not known, although it is probably a post mold which was truncated.

Feature 3 and Associated Features: Postmolds A-D, Gravel Stain 1

Feature 3, located in the northern portion of the site, was only partially defined and excavated during the 1987 field season. Originally, because of its size, different pit fills at the base of the plow zone, and incomplete excavation, it was thought to be two or more overlapping features. With the moister soil conditions which prevailed in the early part of the 1988 summer, complete horizontal definition was easier and the feature was found to be a single feature, 10 feet in diameter. Plow zone removal around the feature revealed four circular smaller stains on its periphery, one on each side. These were cross-sectioned and found to be postmolds. Further to the north was a light brown stain of gravel and coarse sand-filled soil. This was called Gravel Stain 1. Its function or, indeed, whether or not it was cultural in origin was never determined. Other anomalous gravel stains were also found in this area of the site at the base of the plow zone. Excavation of these showed them to be highly irregular, reminiscent of rodent burrows. The presence of a coarse sand and gravel C horizon at varying depths below the B horizon and natural and cultural intrusions into it accounts for the presence of this material at the base of the plow zone and in varying amounts in the fill levels of Feature 3.

Feature 3

After the surface cleaning of this feature was completed, a stain of dark
brown loam with oyster shell on the western and southeastern edges was revealed (Figure 8). As the excavations demonstrated and the profiles show (Figure 14), this shell represented two different fill events (Levels II and III) which were earlier than the deposit which was designated Level I. Level I represented the final fill episode. A concentration of shell-tempered sherds, many from the same vessel and scattered debitage and fire cracked rock was noted on the surface of the pit at the base of the plow zone, northeast quadrant during the 1987 test excavation into the feature. Since there were some large sherds with numerous mends in this deposit, it appears to be intact; the top of Feature 3 was apparently just being reached by the plow.

If the current plow zone is considered, the original depth of the feature may have been as much as 6.3'. The west wall profile (Figure 16) shows the results of a 1.7' test below the clay cap which was originally interpreted as the base of the pit. Contained in the coarse sand and gravel matrix below this clay cap were isolated artifacts and flecks to small bits of charcoal. Any of this material could have worked its way to this depth below the clay cap as the result of natural disturbances after the second stage pit bottom was capped, or after the pit was abandoned. Supporting the interpretation of the lower levels beneath the clay cap as part of the original pit, is the slope of some of the sand lenses which lie in the opposite direction to the slope of the field surface. If the original pit was this deep, the C horizon into which it intruded was unlined. At some later junction, a portion of the walls and bottom of the pit were lined with clay. This was probably done to strengthen the pit or reduce permeability. The origin of this C horizon is water transported, probably an older marine terrace, a bed or terrace of the ancestral Patuxent, or, less likely, Hungerford Creek. The C horizon appears variously at 1.7-2.0 feet below the base of the plow zone.

The feature was excavated by depositional levels within each defined quadrants. These layers can be seen in the profiles in Figure 16. The levels are as follows:

Level I: a slightly organic sandy loam with few shells. This zone was discontinuous across the pit. It was evidently the last deposit thrown into a nearly completely filled pit.

Level II: densely packed oyster and other shells with minimal
soil. This is again a discontinuous fill layer and represents a major episode of oyster shell dumping. The direction of the deposit is from the northern and western side of the pit which, incidentally (see discussion below and Figure 23) is from the direction of the possible structure.

Level III: an organic fine sandy loam with isolated shell lenses. This deposit extended completely across the pit from north to south but incompletely from west to east. Again, the direction from which the shell was thrown appears to have been from the north and west.

Level IV: a coarse sandy loam with organic lenses. The coarse sand and gravel contained in the matrix of this deposit suggests some of the original soil from the excavation comprised a portion of the fill. The direction from which the material seems to have been deposited is from the southern and eastern area.

Level IVa: a very dark and highly organic layer with only scattered oysters but abundant charred nut shells and nut shell fragments. This layer was completely absent in the northern half of the pit and must have been deposited from the south.

Layer V: an inorganic coarse sandy loam with small gravels. This zone is irregularly represented and appears to have been deposited through erosion, e.g. slope wash. The matrix is similar the underlying C horizon and may have been derived from the backdirt from the original pit excavation.

Clay cap: a relatively thin layer of clay. This cap appears to have been used to line the bottom and some portion of the pit walls.

Table 6 shows the distribution of lithics in Feature 3 by level. There were no discernible differences except in volume per level. The same is true for the animal bones and the amount of artifacts of all classes in the fill levels corresponds one-to-one with the intensity of trash per level. Otter notes in Appendix I, the faunal remains show no clear-cut seasonal differences (see further discussion below). The hickory nuts in Level IVa do indicate a fall occupation. According to the analysis by Doms, the oyster
shells also suggest late summer and fall exploitation. It is possible, that Levels II and IVa represent late summer and fall occupations as much as a year or more apart. Conversely, all of the fill episodes from IVa to II (and I) could have taken place during a single season and simply represent clean-up of different activity areas. It is apparent both from the fill contents and the direction of throw, that there were activity areas in the immediate to general area surrounding the pit.

It is also important to recognize the distinctions between Levels I-IVa and Level V. The former are culturally derived fill episodes. Level V, on the other hand, is the result of slope wash. In short, the pit remained open for some time. The absence of gulleying or impact erosion from rainfall shows that the pit was covered during the interval after the deposition of the clay cap and during the period of time the slope wash was being deposited. This relates directly to the interpretation of the Postmolds A-D immediately adjacent to Feature 3.

The original purpose of the pit was not for refuse, nor, as far as can be discerned, for cooking, food processing or really any other archeologically determinable activity. Storage is the most obvious possibility but is only inferable. A ceremonial or social interpretation, e.g. some kind of semi-subterranean structure, cannot be ruled out. Nevertheless, the pit was excavated, a structure erected over it and a clay lining was subsequently placed along the walls and in the bottom. Sometime after this, rainfall ran off the original land surface carrying with it some of the spoils dirt from the pit excavation and deposited it into an open pit. If the purpose of the pit was storage, this represents the period of abandonment of the primary use of the pit. The overhead structure remained because there is no evidence of direct rainfall erosion. Whatever the original purpose of the pit, the shift in use to refuse receptacle begins with the deposition of Level IVa. Pit filling continued during Level IV. Massive slope wash is evident in at least one area in this level. This may indicate the covering structure had been removed. Episodic filling continued until the depression was completely filled in.

The ceramic assemblage from Feature 3 is overwhelmingly Mockley ware (Table 5) with traces of Pope's Creek and Accokeek ceramics. These latter two are presumed to have been left behind by earlier occupants and accidentally incorporated into the fill. The Mockley types are rather equally divided between Mockley Cord Marked, Mockley Net Impressed and Mockley
Plain. Feature 3 yielded over one-half of all the ceramics found at the site; a not unexpected result considering it is by far the largest feature at the site. A probable minimum of 17 vessels are represented by the rim sherds.

The lithic assemblage from the pit shows a range of activities with lithic tool manufacture and modification dominating and other activities only minimally represented. Almost 85% of the debitage recovered from the features came from Feature 3 (Table 1) with almost 92% of the rhyolite coming from here. Oddly enough, no Selby Bay points or bifaces of rhyolite were recovered from the pit although there was one Selby Bay of argillite. The most numerous point form in the feature was the Piscataway type; three of these were found. Their occurrence can be accounted for in two ways: either these represent traces of earlier occupants which were incorporated in the fill; or these were an element of the overall assemblage of the Mockley component (see Gardner 1987 and below for a further discussion of this).

A wood charcoal sample from Layer III of Feature 3 was submitted for radiocarbon dating and found to date to 70 B.C., or 2020 +/-130 B.P. (Beta-27175). This is earlier than any of the accepted dates for Mockley and is more in line with those expected for Pope's Creek. If this date does not apply to the Mockley phase, and it is probable it does not, then the charcoal could have been from the residue an earlier occupation which was incorporated into the fill of the pit, or it was perhaps somehow contaminated through downward percolation of carbonates from the thick shell lense which overlies Layer III.

Postmolds A-D

As noted, four roughly circular stains of dark loam were located in close proximity to Feature 3 during shovel stripping of the area. These were labeled A, B, C, and D, moving clockwise around the feature. While not spaced equidistant from each other, they are sited in such a way that they are located more or less on four sides of the feature.

Postmold A (Figure 17) was ca 1.1' in diameter, reddish-brown in color and loamy in texture with a maximum extension to .8' into the subsoil. No artifacts were recovered from the bisection.
Postmold B (Figure 17) was ca 1.7' in diameter, and appears to have been a postmold within a post hole. The majority of the stain was homogenous in color exhibiting a dark brown color and loamy texture. Surface cleaning revealed small extensions of lighter soil which were more sandy than the dark soil, probably burrows of some kind. In profile, both postmold stains had a shallow rounded bases. The inner stain extended ca .4' in depth, while the mottled one measured ca 1.5' in depth. No artifacts were recovered from the bisection.

Postmold C (Figure 17) was characterized by light brown loam ca 1.2' in diameter. Its profile revealed a mottled fill containing gravel which extended ca .9' in depth and ended with a rounded base. No artifacts were recovered from its bisection.

Postmold D (Figure 17) was a reddish-brown stain ca 1.3' in diameter and sandy in texture. Its profile revealed a leaning, contracting stain which extended ca 2.2' in depth and exhibited several projections. No artifacts were recovered from its bisection.

As noted above, these postmolds are interpreted to be supports for a structure which covered at least the top of Feature 3. The basis for this interpretation is the existence of the molds, the erosional deposition evident in Layer V of Feature 3, and the absence of gulleying or direct impact erosion from precipitation.

Gravel Stain 1

Gravel Stain 1 (Figure 18) was a light brown semi-circular stain ca 15' north of the feature characterized by coarse sand and gravel C Horizon soil directly underlying a plow zone ca .9' thick. This feature was never fully defined or interpreted. It was tentatively determined as being cultural in origin because of the anomalous elevation of the C horizon at the base of the plow zone and the presence of artifacts in what was presumed to be fill, although the stain could simply have been a natural feature such as a tree fall or, more remotely, undulating topography.

The east wall profile shows a typical plow zone/B horizon interface
which is replaced by C horizon. The north wall profile shows the plow zone and C horizon interface without an intervening B horizon. Artifacts were found to a depth of .9' below the base of the plow zone, although these lessened in number rapidly with increasing depth. For instance, at the transition between the plow zone and the sand/gravel fill, two Mockley Net Impressed sherds were recovered and at .9 below this, a Mockley Plain rim sherd with a vessel orifice of 14 cm was recovered. No lensing was evident in the profile. Augering showed a transition to coarser sand at a depth of 2.8' below the base of the plow zone. This sand continued on to ca 5.0', the point at which augering was discontinued.

Feature 17

This feature was located ca 16 feet south of Feature 3 during the mechanical stripping activities. Feature 17 (Figure 19) had maximum dimensions of 1.1' by .6' and was consistent in its light brown color. The plow zone in the general vicinity of the feature was .8' in depth. In profile, Feature 17 exhibited a shallow, rounded base extending .3' below the base of the plow zone. A small fragment of shell-tempered ceramic was recovered in the fill, but no charcoal or other artifacts were noted.

The feature is tentatively interpreted as a post stain, although it must be noted that it appeared to be isolated from the other cultural features. Other stains located in the general area were found to be plow scars or machine smears. It is possible that Feature 17 is related somehow to Feature 3.

The Northwest Cluster of Features

Features 7-8, 21 and 23-26 cluster in the northwestern area of the site and with the exception of Features 23-24 were located during the mechanical removal of the plow zone (which was ca .6' deep). The clustering of these stains, in addition to their proximity to Feature 3 and the absence of any similar stain clustering anywhere else in the site leads to the suspicion that this might represent the remnants of a structure. There are some problems with this interpretation. In the first place, not all of the potential postmolds are "classic" in configuration and could be interpreted as natural
as opposed to cultural features. Indeed, if they were found widely scattered and/or isolated, some might have been rejected. Secondly, the pattern is not complete. On the other hand, there is an arc suggesting an elongated oval which could be the beginning of a pattern. Using only Features 7-8, 21 and 23-24 as one-half the arc of a complete structure, a floor plan of approximately 12' x 12' or 12' x 10' can be interpolated. If all the potential postmolds are included, the hypothetical complete structure would be an elongated oval with dimensions of approximately 28' x 14' to 16 feet. The readers may judge for themselves.

Feature 7

A dark brown irregular stain of sandy loam, Feature 7 had maximum dimensions of .85' by .65' (Figure 20). Its profile revealed a contracting V-shaped stain which extended in tapering form beyond the base of the excavation. Its depth was 1.3' below surface. No artifacts were recovered in the feature.

Feature 8

Feature 8 was first identified as a single dark brown oval stain measuring .8' in diameter, but further cleaning revealed a second, lighter stain encircling the first with the total feature measuring 1.6' by 1.2' in its maximum dimensions (Figure 20). The inner stain consisted of a heavy charcoal concentration and very dark soil, while the outer stain exhibited small amounts of charcoal and lighter soil, mottled in color. The two stains were clearly separated from each other and maintained their boundaries in excavation. In profile, the dark charcoal-filled stain extended only .25' below the undisturbed sub-surface and was flat-bottomed in shape. This was underlain by a lighter brown stain (intermediary in color between the two surface stains) which also included chunks of charcoal and extended to .5' and exhibited a rounded profile. The encircling lighter stain extended 1.5' below the base of the plow zone and included scattered charcoal. It also exhibited a rounded profile, although its boundary was diffuse. The excavation yielded one grey chert flake.

Feature 21
This small circular stain was .3' in diameter. It was dark brown but displayed no charcoal on the surface. It was apparently not profiled. A notation from the excavator indicates it was judged it to be a tap root.

Feature 23

Feature 23 (Figure 21) was dark brown in color, 1' in diameter, with an additional .2' extension of lighter brown soil on its southern side. In profile, Feature 23 revealed two layers of soil: a dark brown stain contracting to a slightly rounded, squared base and extending .8' below the base of the plow zone, and a lighter brown stain contracting to a narrow column and extending another .9' in depth. Neither of the layers contained charcoal or artifacts.

Feature 24

Feature 24 (Figure 21), a circular stain, was only .6' at its maximum dimension and was consistent in color on the surface. In profile, it exhibited a shallow basin shape, extending .35' below sub-soil. No artifacts were recovered, nor charcoal noted.

Feature 25

Feature 25 was .8' in diameter and exhibited charcoal on its surface. As noted, the stain was circular in shape, with the soil along the northern edge being mottled in color. The feature was discovered on the last day of work and was considerably damaged by the heavy equipment making the profile impossible to discern. What remained of the profile indicated charcoal mixed with sandy loam. No artifacts were recovered in the excavation.

Feature 26

The second feature discovered on the final afternoon of field work was Feature 26 (Figure 21). This circular-shaped stain was larger than its neighbor, its maximum dimensions being 1.4' by 1.5'. The soil exhibited mottling on the surface of the stain, ranging in color from dark brown to lighter brown; a pocket of charcoal was also noted. Charcoal was also noted throughout the profile, which was irregular but conical. No artifacts were recovered in the excavation, although a crushed oyster shell was noted in the fill.
Feature 27

Feature 27 (Figure 22) was located at the northeastern edge of the stripped area, being partially uncovered by the bulldozer on the last afternoon of field work. It was a large, 7' by 4.8', roughly oval-shaped stain having densely-packed oyster shell on the eastern third of the surface. The remainder was characterized by a dark brown sandy loam. Feature 27 was second only to Feature 3 as the largest feature at the site.

The bulldozer damaged the surface of the southern side of the feature during the stripping; given this fact, as well as the time constraints involved, it was decided that the feature would be bisected with the southern half to be excavated as one unit. The soil was dry screened and a sample of feature fill taken for water screening. The excavation profile revealed a basin-shaped feature with a maximum depth of 2' below the damaged surface. The eastern side of the feature was filled with densely-packed oyster shell, pebbles, and dark, organic soil, while the western side contained a homogenous fill of dark, organic soil with pebbles. Both deposits contained prehistoric artifacts, which will be detailed below, but it was noticed during the excavation that faunal preservation was much better in the shell area and that most of the bone was recovered from here.

A total of fourteen lithic artifacts were recovered, including seven flakes, three bifaces, three core fragments, and a small hammerstone (Table 1). Quartz was the dominant raw material of the assemblage, with three of the flakes, two of the bifaces, and two of the core fragments being made of this. Rhyolite represented the second most common raw material, accounting for four flakes; jasper and quartzite were also represented. Of special interest are two of the bifaces, one of which may be a Piscataway preform, and one which may have been manufactured from non-local yellow and red jasper. All of the flakes are less than 30 mm. in length, and none show use.

The ceramic assemblage (Table 5) included a total of twenty-two Mockley Net Impressed sherds (three rim sherds and nineteen body sherds) and five Mockley Plain sherds (one basal sherd and four body sherds). The rim fragments were reconstructed in order to determine the orifice measurement which was found to be 40-42 cm.
Charcoal, a burned acorn fragment, .18 gr. of burned hickory nut fragments and bone were also recovered in the excavation of the south half of the feature.

The original purpose of Feature 27 is not known. It was most likely a storage pit ending up as a trash pit with two layers of fill.

Feature 27 is interpreted as being contemporaneous with the other large features excavated at the site. This is supported by the presence of Mockley ceramics. The quartz bifaces fall into the range for Piscataway preforms. The debitage amounts are quite low but except for Feature 3 are consistent with the other features, another indication of contemporaneity. Rhyolite debitage is present in traces. Unlike the southern cluster of features, no other features were found in the immediate vicinity. Unfortunately the machine excavations did not extend far enough to the east and northeast to determine if Feature 27 was an isolated pit or part of another cluster.

Isolated Surface Finds

While excavating at 18CV272, T.A.A. crew members randomly collected lithic artifacts from the surface. Of special note are the two rhyolite Selby Bay projectile points, one of which was recovered from the surface directly west of Feature 3, and one which came from the southern edge of the site near the ravine. A large quartz Piscataway point base and midsection was recovered from the surface in the northwestern corner of the site, and a smaller, crudely made quartz Piscataway point was recovered from the southeastern site area. Finally, a brown jasper Late Woodland triangular projectile point was recovered from the eastern edge of the site. The general distribution of these surface finds, and in particular the Piscataway points, seems to mirror the finds of similar artifacts during the 1987 controlled surface collection.

Floral and Faunal Material

A detailed analysis by Edward Otter of the faunal material from the 1988 excavations is presented in Appendix I. Joseph Balicki's analysis, which
accompanied the 1987 Phase II report is presented in Appendix II. In the following discussion, these analyses will only be summarized. No detailed analysis has been completed of the floral material. What is known to date is also summarized in this section. The shell analysis done by Keith Doms for the 1987 report is presented in Appendix III.

Feature 1 contained only two unidentifiable fragments of long bone and a modest amount (210 left valves) of oyster shell. Fish bones were recovered but have not been analyzed. The weight was 15.63 gr (complete water screening). Feature 2 contained only a few more bones (8) with opossum and box turtle represented in the identifiable material. Fish bone weight was 78.58 gr (complete water screening). Oyster shell was abundant (1564 left valves). Feature 4 was much richer, with 436 bone fragments recovered. At least one quarter of these, however, were associated with a complete dog skeleton. Although this skeleton was not discerned when the pit was being excavated (by shovel) the presence of virtually an entire dog indicates a burial and Balicki suggests that the good preservation of the bone supports this. Other species represented were deer, box turtle, woodland vole, striped skunk, untyped fish and untyped bird as well as various unidentifiable bones. Fish bone weight in Feature 4 was 44.57 gr (one half of pit contents water screened). Also present were small amounts of stout clam and razor clam. Doms also notes a high count of oysters (1284 left valves). Feature 6 contained no oyster shells and only 3 bones of which deer was the only identifiable species.

According to Doms, the majority of the oysters from all the pits are sand oysters, procured in shallow water. He notes that virtually all of the oysters were collected between September and December and because of the lack of edge damage appeared to have been steamed rather than pried open. He also noted the much higher frequency of left valves as opposed to right valves commenting without elaboration that this is a phenomenon he has observed in other collections.

Feature 3, excavated under the 1988 research design, was treated differently and no shell was gathered. Otter's analysis was done by fill level and it was hoped seasonality could be isolated. Combined with Balicki's analysis of the bones from Level I, this first level contained deer and box turtle as well as unidentifiable bones. The total count was 45. In contrast, Level II contained 1127 individual specimens. The species represented
included white tailed deer, grey fox, vole, box turtle, diamond backed turtle, cooter, white perch and poisonous snake. This is in addition to 681 unidentified fish and 24 unidentifiable bird remains. Level III contained 742 individual bones, among which were white tailed deer, bear, beaver, squirrel, box turtle, rockfish, and rockfish or white perch. There were also 14 unidentified large bird remains and 87 unidentifiable fish bones. Level IV contained 152 bones including opposum, grey fox, diamond back turtle, snake and 35 unidentifiable fish bones. Level V contained no bones. All levels contained shells. The highest concentration was in Level II, followed by Level III and IV. Level I contained the least number and Level V contained virtually no shell. The table below shows some of the differences and similarities which exist by level.

Table 7
Food remains comparison by level, Feature 3, 18CV272

<table>
<thead>
<tr>
<th></th>
<th>Level I</th>
<th>Level II</th>
<th>Level III</th>
<th>Level IV</th>
<th>Level V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell</td>
<td>few oysters</td>
<td>abundant oysters</td>
<td>abundant oysters</td>
<td>some oysters</td>
<td>few oysters</td>
</tr>
<tr>
<td>Bone (no.)</td>
<td>45</td>
<td>1127</td>
<td>742</td>
<td>152</td>
<td>0</td>
</tr>
<tr>
<td>Nuts (wt.)</td>
<td>0</td>
<td>6.15gr</td>
<td>.97gr</td>
<td>8.68gr</td>
<td>12.59gr</td>
</tr>
<tr>
<td>Species</td>
<td>deer</td>
<td>deer</td>
<td>deer</td>
<td>grey fox</td>
<td>diamond back turtle</td>
</tr>
<tr>
<td></td>
<td>box turtle</td>
<td>box turtle</td>
<td>box turtle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>grey fox</td>
<td>diamond back turtle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(no.)</td>
<td>fish(681)</td>
<td>fish(81)</td>
<td>fish(85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white perch</td>
<td>white perch</td>
<td>rockfish</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>snake</td>
<td>bird</td>
<td>snake</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bear</td>
<td>opossum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beaver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>squirrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The level by level comparison above does show differences and similarities between levels. Nuts, the majority of which are hickory, occur in all levels except level I. This probably can be taken to indicate fall occupations for all levels. Oysters are present in all levels and, if these follow the pattern observed by Doms for the other pits, this further supports a fall use of the site. There is no intra-level universality concerning
presences and absences of species. It is not clear what this means. It is suspected the varying richness in bones reflects, in part at least, the preservative quality of the shells. Level II was the richest of all of the levels and also had the highest volume of shell, total bone and total fish bone. Level V, on the other hand, which has no bones has the highest volume of nuts. This kind of difference makes it doubtful if preservation alone is responsible for the quantitative and qualitative differences by level. Since there appears to be no obvious seasonal differences, other factors are intervening. The fill episodes reflect site cleaning activities but whether this was at the beginnings, mid-points, or ends of the occupations, in some other way cyclical, simply random, or took place over a long period is not something which is easily determined; perhaps it may even be impossible to determine. Causality aside, the preserved remains in the pit show a varied range of resources which were exploited, and reads like an inventory of a significant portion of the estuarine and terrestrial resources available in the area.

Feature 27, of which only one half was excavated and water screened, contained a total of 303 bones, among which were white tailed deer, box turtle, vole, rockfish/white perch and a single large bird bone. There were various unidentifiable bones and bone fragments including 129 fish bones. The portion of the pit excavated contained a fill layer of oyster shells. A burned acorn fragment and .18 gr of burned hickory nuts were also recovered.
Table 11 provides a feature by feature comparison of the pits other than Feature 3.

Table 8
Food remains comparisons Features 1, 2, 4, 6 and 27, 18CV2722

<table>
<thead>
<tr>
<th></th>
<th>Fea 1</th>
<th>Fea 2</th>
<th>Fea 4</th>
<th>Fea 6</th>
<th>Fea 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell</td>
<td>210(lv)</td>
<td>1564(lv)</td>
<td>1284 (lv)</td>
<td>none</td>
<td>abundant</td>
</tr>
<tr>
<td>Bone (no)</td>
<td>2</td>
<td>8</td>
<td>436</td>
<td>2</td>
<td>303</td>
</tr>
<tr>
<td>Nuts</td>
<td>trace</td>
<td>trace</td>
<td>trace</td>
<td>none</td>
<td>trace</td>
</tr>
<tr>
<td>Species</td>
<td>box turtle</td>
<td>box turtle</td>
<td>deer</td>
<td>deer</td>
<td>box turtle</td>
</tr>
<tr>
<td>Fish</td>
<td>15.63g</td>
<td>78.56gr</td>
<td>44.57gr</td>
<td>129(#)</td>
<td>rockfish/white perch</td>
</tr>
<tr>
<td></td>
<td>vole</td>
<td>striped skunk</td>
<td>bird</td>
<td>vole</td>
<td></td>
</tr>
</tbody>
</table>

Because of its preservative qualities, a correlation between the presence of shell and of bone exists; this may account in part for the absence of bone in Feature 6 and the differential distribution in the other pits. On the other hand, the absence of shell in Feature 6 is significant in itself. Just what this signifies is not known. Features 1, 2, 4 and 27, because of the presence of shell in each of them, are more nearly comparable. The highest faunal counts, in descending order, are Feature 4 with 436, Feature 27 with 303, Feature 2 with 8, and Feature 1 with 2. The Feature 4 totals are biased because 104 of the enumerated bones came from a single dog. However, since we cannot control for individuals in the other pits, reducing this figure from 104 to 1 might be equally biasing. The total, however, is probably more closely comparable to Feature 27 and, of course, the two features are relatively close together in volume being the highest in the groups followed by Feature 2, Feature 6 and Feature 1. By level, Feature 3 is comparable in volume with Features 4 and 27. Its Levels II and III contain considerably more bones than either Features 4 or 27, but Levels I, IV and V contain less. Levels II and III in Feature 3 also contain a greater diversity of food remains than either Features 4 or 27. There are also some differences in species represented.
It is not clear what this analysis indicates. In general, it can be stated that the area around Feature 3 seems to have been the center of the site. This corresponds with what would be expected based on its great size, and presumably, importance, and its proximity to the post mold cluster and the inferred structure. If temporal differences are represented in the fill levels of Feature 3, the most intensely food related activity took place during the intervals represented by Levels II and IV. This type of activity then may have shifted in other directions, e.g. toward the Southern Feature Cluster or toward Feature 27. If all the areas were in use at the same time, then it still appears that Feature 3 was the central point in the site but that the activities occurring in the different areas were not completely unrelated.

Radio-carbon Dates

Two radio-carbon dates were obtained from Beta Analytic. From Feature 4, "shell and soil layer, wood charcoal produced a date of 1050 +/- 140 BP (Beta-27174) or, translated into BC/AD readings, a range of A.D. 760-1040. The early part of the range falls into the later part of the maximum end date of A.D. 800 usually assigned to the Mockley phase. The second date was from Feature 3, SE quadrant, Level III, and read 2020 +/- 130 BP (Beta-27175). Translated, this is a range from 200 B.C. to A.D. 60. This is below the minimum range of A.D. 200 usually assigned to the beginning of the Mockley phase. These dates were quite disappointing and neither seem acceptable., Acceptance would mean nearly a 1000-year difference between the Southern Feature Cluster and Feature 3.

SUMMARY AND CONCLUSIONS

A total of 11,200 square feet, all of this in the western edge of the site, was stripped at 18CV272 during the Phase III investigations. Originally, the plan was to remove the plow zone from a number of different loci, e.g. the "hot spots" noted from the surface collection. As discussed in the Methodology section, circumstances precluded this. Accordingly, except for scattered test pits, all effort was concentrated in the western portion of the site. This was the same area in which the Phase II excavations focused. However, this has allowed us a look at a considerable portion of a Mockley
settlement. Whether or not the features recovered constitute the preserved portions of the entire community is not known. This is, of course, unfortunate, in that the question of whether we excavated a complete community pattern remains inconclusively answered. This, however, is only one of several unfortunate aspects of this project.

The portion of the site we were able to study (Figure 23) contained one large pit, Feature 3, with associated postmolds situated at or near the highest point of the site (Feature 3 Cluster on Figure 23); a cluster of postmolds to the immediate northwest (Northwestern Feature Cluster on Figure 23); an isolated pit, Feature 27, to the northeast of Feature 3 (Feature 27 on Figure 23); and a cluster of four pits well to the south near the border of the ravine and embayment and its associated springhead (Southern Feature Cluster on Figure 23). From at least one perspective, the presence of Mockley ceramics, the pits can all be considered as a single component. Whether this layout represents an actual functioning synchronic community or a series of intermittent occupations over the 700 year duration of Mockley ceramics will probably always be debatable. The discussion presented below marshalls the evidence relevant to this question.

The primary bases for the synchronic community interpretation are the absence of feature and activity area mixing, the overall feature layout and the contrastive size of the features. Relative to the first, in all of the areas excavated, there was no overlap and resultant mixing of features which would be anticipated if multiple reoccupations had taken place over the 700 years or so of the known Mockley duration. The contrastive sizes of Feature 3 and the rest of the pits as a group along with their non-overlapping and spatial separation are suggestive of synchronous community patterning as well as functionally different entities, as opposed to different size manifestations of the same activity. Functional differentiation of Feature 3 is further indicated by the associated posts and the evident roof structure over the pit, elements which are lacking on all the other pits. Feature 3 is the only pit to be sited close to the remnants of a structure and it also happens to be the largest pit, both of which can be used to argue the synchronic case as well as to support the interpretation of the post pattern as the remains of a structure. If the direction of the throw of the fill in Feature 3 is indicative of surrounding activity areas, this can also be used to supported the structure interpretation and its synchronity with Feature 3.
Feature 3 is the largest pit, of which we are aware, to have been reported to date with Mockley associations. Indeed, the pit rivals in size any with which we are familiar in the Middle Atlantic, even those from much later prehistoric contexts when agriculture is demonstrated or assumed. By any standards, Feature 3 is a complex structure which is made even more so by its Middle Woodland dating. Any of its attributes - its size, the presence of the four associated posts, the evidence for an overhead covering, and the lining of the bottom and part of the side walls of the pit - together or separately make it unique among reported pits. The original function of the pit is something which can only be surmised. There was no evidence of burning, either for roasting or cremation. There were no human remains in any of the deposits, so burial, unless temporary and subsequently removed, can be ruled out. Heat altered rocks were rare which would negate the interpretation of use as a sweat bath. The depth and slope of the walls would seem to preclude use as a dwelling. As stated previously, storage seems to be the most likely explanation.

If, as seems likely, the pit's original function was that of storage, then the Mockley phase populations, at this particular site at least, had either delusions of grandeur, were engaged in structural overkill, or were quite capable of generating large surpluses. Neither of the first two alternatives should be taken seriously. The last, however, is important, both for the fact that large surpluses could be generated, and that such surpluses were generated and structures such as Feature 3 were built to house them. The analysis of the floral and faunal remains show what would be typically expected for a group efficiently utilizing the estuary and adjacent uplands in the saline Coastal Plain. There is no evidence of cultivated or manipulated plants. This alone does not mean these activities were not practiced but it is suspected that if they were and they were stored in the Feature 3 repository, some trace would have been recovered. We are therefore left to conclude that the surpluses, as well as the foods the local populace consumed immediately, were generated through efficient exploitation of the local wild resources.

Was Feature 3, however, the locus for surplus storage for the residents of the single house to which it was contiguous? Were there more houses which have been plowed out, and was the surplus then for a larger resident population? These are intriguing questions, which can only be answered indirectly. For instance, given the slope of the field with the highest and
lowest relief area in the vicinity of Feature 3, the Northwestern Cluster of Features and Feature 27, if there had been any structures south and southwest of Feature 3 it is probable that at least traces of them would have survived the plow, since it is the area south of Feature 3 where soil would have accumulated. Unless there were other units to the east or northeast of Feature 27, then, the structure to the northwest of Feature 3 was the only one present. The interpolated maximum dimensions of the structure represented by the post scatter is sufficiently large to have housed a large extended family and/or more than one nuclear family. The potential surplus volume of Feature 3 seems excessive for such a group especially, as seems likely, if some of the pits in the Southern Feature Cluster were also used for surplus storage. Indeed, it is probable that some of the pits in the Southern Feature Cluster, e.g. Features 2 and 4, served as storage for the residents of this single dwelling hamlet.

If this is the case, what may be represented by the pit features at 18CV272 are two types of storage: that associated with the household and that associated with an extra-hamlet unit. This is, of course, a great leap of interpretation considering the evidence available. It is evident, however, that if Feature 3 was not intended for the storage of surpluses for the single family resident at the site, which seems unlikely given its size and the presence of other and somewhat spatially removed storage pits, then the surpluses were intended for use by people not living at this particular site. If this is indicative of some kind of inter-dependent territorial grouping in which one or more similar small hamlets were linked in a redistribution and reciprocity system, then Feature 3 could well have been the "tithe" or "tax" repository for the residents of 18CV272. If this is the case, then it is probable that other contemporary and linked hamlets should also have their "Feature 3's". It is also possible 18CV272 was the, or one of the, "central places" in this system and other "lesser places" may not have the large features.

This, of course, moves us well beyond the type of loose social structure implicitly, if not explicitly, envisioned for the Mockley phase populations. The existence of a more complex society should not be surprising for it is well known that one of the hallmarks of the Mockley phase is the high frequency of non-local materials (such as lithics) with which virtually every component is associated. Exchange is a much ballyhooed term these days and is used by virtually every archeologist from Maine to Mexico to discuss the
evolution of "complex societies". In the Middle Atlantic Tidewater, complex societies are much in vogue, especially for the late prehistoric to historic period. Evidence of exchange is perforce one of the hallmarks of this. If there is any prehistoric continuity in such societal development then it should not surprise us to find such evidence in the Middle Woodland. Of course, even earlier, there is the just prior Early Woodland III Delmarva Adena and the Late Archaic II Koens-Crispin/Savich Farm which, if these are not considered to be ranked societies in the classic evolutionist's sense they certainly are well within the "Big Man" incipient ranking.

The inter-dependency of many Mockley components is something which has to be accepted even if the above interpretation is not correct. There was simply too great a reliance on non-local lithics which, if there is no relationship between the Piscataway lithic (quartz) complex and the Selby Bay lithic (rhyolite) complex, reaches total dependence. This could never have been achieved without inter-local, inter-regional and even broader inter-areal linkages. At the scale of 18CV272, we may be seeing one level of this in Feature 3. Unfortunately, with the evidence from 18CV272 alone we are not in a position to carry this interpretation much further than we already have. What is needed to establish a firmer footing is intensive investigations, especially extensive excavations, of different sites and/or components in a restricted area to define intra-site structures and inter-site relationships. Patuxent Point would have been an ideal location to initiate such a study as, it is clear from the Phase 2 study more than one prehistoric site was represented in the 90-acre tract, especially in the area along Hungerford Creek in what was loosely defined as 18CV278. Even in the absence of such studies, Feature 3 and the site plan at 18CV272 exist and represent an archeological reality. This alone advances us considerably and forces us to perceive the Mockley phase in a different perspective and should send us scurrying after new and broader sets of data.

Returning to 18CV272 and its intra-site patterning, a lot of potential information and inferences can be deduced from the available information. As is evident from the fill in Feature 3, the final use of this pit was for holding refuse deposits. These certainly represent episodes in the life of the community. It is not clear whether these deposits are seasonal, or simply pulses of cleaning of activity areas. It is also not clear whether this was general site trash, or trash from a specific or limited set of activity areas. It is probable, based on an assumption of convenience, that the trash derived
from activities in the immediate vicinity. The direction from which the fill deposits were thrown indicate this was initially from the north and northwest, and then from the south and southwest. Given the proximity of the post molds, this all suggests activity proximate to the structure.

The lenses vary in quantity of organic material. The final fill event contains limited amounts of organic refuse and indicates a lessening of activity over previous fill deposits. The penultimate event was characterized by massive shell dumping. Whether or not this was the byproduct of a single harvest and ensuing processing event, or a series of such occurrences is, of course, not known. The quantity of faunal material included in Level II suggests the latter. The next lower level has a mixed assemblage of bones and shells, surely the result of a general clean-up of the area. Level IV shows a lessened amount of organic material but what is present is general and diffuse. Level V, on the other hand, contains the remains of a single food item, acorns, with most of the fill in the level deriving from erosion prior to the pit becoming a receptacle for refuse.

The other features are not particularly exceptional when contrasted to Feature 3, and pits of the sizes of Features 1, 2, 4, 6, and 27 are not uncommon in Mockley sites (c.f. Stephenson 1963). Features 1, 2, 4 and 27 contained shell either tightly packed as in Features 1 and 2, or as lenses as in Features 4 and 27 (and 3). The most pronounced fill episodes occurred in Feature 4. Feature 4 was also the largest pit in the Southern Feature Cluster and was unique in containing a complete dog skeleton. Feature 6 was the only pit which contained no shells. The artifact content in all of these features, singularly and lumped together, was low. Their function is also unclear. Storage, especially for Features 4 and 27, is the likeliest possibility.

Of course, compared to Feature 3, the volume of the other pits is markedly lower when they are considered singly and only slightly less so when the potential volume of all of the pits are combined. As suggested above, perhaps these pits contained the foods laid aside for particular times of the year for use by the 18CV272 community. An intra-site comparison of food remains contained within the features (Tables 10 and 11) shows cross site similarities in consumption although some specific differences exist. The food remains contained in the pits as refuse, however, are not necessarily indicative of what was once stored in the individual pits.
Considered as a unit, some seasonal differences do seem indicated. As David Clark indicated for the 1987 report, his preliminary analysis of the fish bones suggested spring or early summer. The nuts indicate a late summer to fall harvest. The oysters range from early fall to winter harvests. The only season not conclusively represented is summer. In practical and logical terms, this is to be expected, since summer is the season when the estuary is at its lowest productive level and when more or less permanent residents can be expected to have dispersed. With the environmental data, the size of Feature 3, the post mold pattern, and the intra-site structure in mind, an assumption of more or less permanent residence, or, in effect, sedentarism, appears reasonable (see also Gardner 1982). This was apparently achieved without benefit of plant cultivation.

As indicated in the discussion of the lithic artifacts, the intra-site distribution of lithic debitage within the features is tremendously skewed; virtually all of it comes from Feature 3. Indeed, there are more lithic artifacts in Feature 3 than from the total 1987 surface collection of the area stripped in 1988 and the remainder of the pits combined. Assuming the material was not brought from areas well removed from their final resting place, this makes the Feature 3 locus the primary activity area in the site. The types of lithic artifacts present provide an indication of the nature of the activity involved. Hammerstones, cores, bifaces, chunks, debitage, projectile points and utilized flakes are all present. With the exception of the latter two, these are the types of lithic artifacts associated with primary tool manufacture. Another indication of this is the relatively high incidence (27 out of 73 or 37%) of cobble cortex on the non-rhyolite debitage. The differences in lithic debris become more striking when material other than rhyolite is excluded for 96% of the rhyolite from the features is derived from Feature 3. For the entire area of 18CV271 and 272 including the 1987/88 surface collection, 83% of the rhyolite was found in Feature 3.

From this type of distribution, it is evident the activities in the Southern Feature Cluster required minimal primary lithic tool manufacture. The same statement holds true for the Feature 27 area. The Feature 3 area was evidently the heart of the site. Disposal and probably processing and preparation and perhaps consumption of food did take place in the other loci. This kind of differential distribution of lithics is one more line of evidence to support intra-site synchronicity of the features as well as lending credence to the idea of a single residential locus around Feature 3.
Extracting from the ceramic tables and tabulating only Mockley ware, Feature 3 contained 443 sherds; Feature 4, 110; Feature 1, none; Feature 2, 51; Feature 6, 3; and Feature 27, 38. The total from Feature 6 is misleading since all of these are probably from one vessel, but even without mends, it is evident the bulk of the ceramics come from Feature 3. This is again an indication of the intensity of activity in this locus and follows the pattern observed for the lithics. There is, however, a relatively high number of ceramics from Feature 4, more so, comparatively, than lithics. This suggests that activities involving ceramics, e.g. food processing, took place around these features.

The intra-site differences discussed above are, except for the post mold pattern, one of degree, not of kind. Feature 3 is large but it is after all a pit like Features 4 or 27. All site loci and most features contain the debris of daily living. The kind of intra-site space utilization evident at 18CV272 is that of a habitation site where the various activity differences can be blurred because of overlap. There well may be other activity loci which were missed because they lay in areas not excavated. If so, then whatever their nature, they were removed a greater distance from the main domestic activities. The suspicion here is that the 18CV272 excavations have given us a rather full archeological picture of the life and layout of a Mockley phase residential locus. It is hoped that further work will replicate this pattern and/or show variations on the basic theme in order that patterns may emerge. Or if such patterns do not exist, they may provide a more complete picture of the different ways of doing the same thing. Of equal significance are the inter-site relations. It is suspected that with the kind of local exploitation required to generate surpluses sufficient to account for a unit the size of Feature 3 and the general foraging economy that "homesteads" were rather widely dispersed. Similar residential units too close to one another would likely put too great a strain on the natural resources.

Much of this discussion has treated the site layout as a static synchronic picture. The evidence, to us, strongly supports the synchronic picture but the term "synchronic" must be viewed in a rather broad sense; it is certainly less than the 700 years of the Mockley phase but greater than "a day in the life of...". The pattern at 18CV272 spans the beginning and the end of the site. During this period, internal changes may have taken place. Our ability to discriminate time is not fine enough to track these down but perhaps
something like Feature 27 represents the abandonment of the space demarked by the Southern Feature Cluster. Of greater significance is the shift in function of Feature 3. If our model of inter-site relationships is correct, then what does the loss of the storage function of Feature 3 imply for this hypothesized extra-territorial integration? If 18CV272 were a tell in the Middle East, it could be postulated there was a breakdown in inter-group solidarity. This could be the case at 18CV272 but, lacking significant occupation levels, we do not know what happened at the next phase of occupation. During the use life of 18CV272, however, at some juncture Feature 3 came to be the repository for trash. If this took place over a very short time, then the activity could represent clean-up prior to abandonment--sort of like an army at the end of a bivouac. If the in-filling process took place over a longer period of time, then there may have been a significant change in inter-group relations. Many questions remain to be answered.

One final matter which needs addressing and to which discussion was given in the Phase 2 report (Gardner 1988) concerns the relationship between the Piscataway and Selby Bay projectile points or bifaces. The former are clearly manufactured from local lithics, generally quartz, which is probably only a reflection of the predominant Coastal Plain cobble type. The latter are made of rhyolite, or, in one case argillite, which are equally clearly non-local lithic types. As we have seen, rhyolite bifaces came into the site in a late stage needing only minimal modification. The Piscataway points were probably manufactured at the site, as is suggested by the presence of quartz preforms, quartz flakes with cortex, and quartz core fragments. The rhyolite debitage is clearly associated with the sharpening and further reduction of the rhyolite bifaces/points. It is not so clear whether or not all the quartz and other local cobble debitage is associated with the manufacture of Piscataway points.

If, as is usual in our chronologies, we associate Piscataway and cognate points such as Rossville with the earlier Middle Woodland I net marked horizon (c.f. Gardner 1982, 1988), then the Piscataway points and much of the local lithic debitage would be associated with a Popes Creek component. This would mean that at 18CV272 we have a relatively heavy Pope's Creek component with very few ceramics and no features. The implication from this would be an encampment with a focus on hunting. The corollary of this for the Mockley component would be a virtually exclusive dependence for the
lithic aspect of their tool kit on the rhyolite bifaces: presumably their lithic spear points and any unifacial tools derived from late stage bifacial reduction. This kind of dependence on imported lithics means a strong cultural dependence on others. The only relief from this would be the use of local lithics in expedient cases or for certain categories of tools, which cannot be demonstrated, or the use of non-lithic substitutes, which also cannot be demonstrated.

An alternative interpretation is the co-existence of two lithic assemblages, at least in early Mockley, one represented by the Piscataway and local lithic assemblage, the other by the Selby Bay and non-local lithics. If this scenario was correct, then at least a partial bridge could be established between Middle Woodland I and II. One of the more intriguing questions which would arise if this were indeed the case would center around why the ceramics changed from Pope's Creek to Mockley but the Piscataway projectile point style remained constant, but with the addition of a second biface point style, Selby Bay. With projectile point styles, raw material predilection and ceramic wares changing abruptly, a migration and population replacement is the only explanation for the shift from "pure" Popes Creek to "pure" Mockley. If, however, there is overlap in certain elements then the migration-population replacement model must be revised to accommodate alternative change scenarios.

It was hoped the Phase III excavations would help resolve this question. The presence of three Piscataway points in Feature 3, considerable quartz and rhyolite debitage, and a Selby Bay point of argillite is suggestive of co-occurrence. On the other hand, it is impossible to conclusively dismiss an interpretation which supports a mixing of an earlier (Pope's Creek and Piscataway) with a later (Selby Bay and Mockley) occupation. 18CV272 is probably as close as we will come to a single component Mockley occupation but Pope's Creek sherds were found in the pit and in the vicinity. Mixing, unfortunately, cannot be dismissed.

The excavations at 18CV272 have taken us a long way and have opened up new dimensions. The interpretations we have offered are only one approach to the data. We feel we are on the right track. Others may disagree. Regardless, we think the time is right to depart from traditional considerations and open up new horizons, both in terms of data gathering and site interpretation.
It is also worthwhile to point out that the excavations at 18CV272 cost less than $25,000 for both phases exclusive of Otter's earlier work. Within this, it must be understood that this would not have occurred without TAA's commitment to the site and the archeology and not to profit margins or the so-called "bottom line". This is not to say that we favor doing archeology at a cost overrun basis. On the contrary, we would have preferred to have had more money to do the work we originally envisioned. For various reasons we did not. At the same time, however, we did not walk away when this was spent. The opposite end of this extreme is the current "high cost of doing archeology", some of which, in the principal investigator's opinion, amounts to profiteering and price-gouging without benefit to archeology. We personally have nothing but contempt for the bulk of the architectural and engineering firm subsidiaries who spend far more than is ever given back to the archeology. Archeology becomes to them an endeavor in which they have to justify their existence to the parent company, and existence justification in this instance is overhead and profit and loading sites with significance and biasing data toward maximum data recovery schemes. For every $1,000 which can be added to the cost, there is another $900 to $1,500 which can be tacked on. These firms, however, have been and are the wave of the future as the state and federal bureaucrats who are ostensibly overseeing the resource define an ever-broadening set of requirements which have little to do with archeology but rather satisfy rules and regulations and make completion of forms simpler. It is at this level our profession enters "boiler-plate archeology" with reports that are little more than empty shells filled with meaningless words.

Personnel

Dr. William M. Gardner served as principal investigator and is responsible for the contents of the report. Carole L. Nash analyzed the artifacts and wrote the bulk of the section dealing with the field work and feature description. She also served as co-supervisor. William P. Barse supervised the excavation of Feature 3 and drew the feature profile. Joan M. Walker edited the manuscript, took the photographs and drew the vessel in Figure 13. Cheryl Lane, Janice Biller and Joan Walker served as field crew.
Acknowledgements

Appreciation is extend to CRJ Associates of Camp Springs, Maryland, developers of Patuxent Point without whose cooperation and funding the excavations and analysis presented herein would not have been possible. We also extend our thanks to Keith Doms, Joseph Balicki, Edward Otter and David Clark for their analyses.
References Cited

Gardner, William M.

Mayr, Thomas
1972 Selby Bay in Retrospect. *Maryland Archaeology* 8:2-5

Otter, Edward
1987 Archeological Study of Phase One Construction Area of Patuxent Point, Solomons Island, Calvert County, Maryland Report on file, Maryland Historic Trust, Annapolis.

Stephenson, Robert L. and Alice L. L. Ferguson

Wright, Henry T.
1973 An Archeological Sequence in the Middle Chesapeake Bay Region, Maryland. *Archeological Studies* No. 1, Maryland Geological Survey, Baltimore.
Figures
Maryland Archeological Research Unit Map and Location of Patuxent Point Project

Figure 1
Portion of U.S.G.S. 7.5' Solomons Island, Maryland quadrangle map showing location of Patuxent Point project

Figure 2
Portion of U.S.G.S. 7.5' Quadrangle Showing Location of Study Area Field Divisions

Figure 3

54
Feature Distribution 18CV272

Figure 4

55
Plan 18CV272 Showing Machine Stripped Area and Features in Relationship to Surface Artifact Density

Figure 5

- **pit or postmold**
- **machine excavated area**
- **total artifact count per square**
- **"denser" artifact concentrations**

largest artifact count per 20'square = 7
Plan Features 1, 2 and 4 18CV272

Figure 6
Cross section Feature 4 18CV272

Figure 7
Plan Feature 3 and Associated Postmolds 18CV272

Figure 8
Figure 9
Length width relationships Selby Bay points from Patuxent Point, Md.
Figure 10
Length width relationships Piscataway points from Patuxent Point, Md.

- •- Length (mm) •- Width (mm)
Figure 11
Comparisons of length and width measurements of Piscataway and Selby Bay types Patuxent Point, Md. (18CV271,272, 285)

Selby Bay

Piscataway

- Length (mm) - Width (mm)
Figure 12
Mockley Ceramics by Type and Provenience 18CV272

Fea 3	Fea 2	Fea 4	Fea 6	Fea 1	Fea 27	Total
Mock CM | Mock NM | Mock Pl

Legend:
- Mock CM
- Mock NM
- Mock Pl
Sketch of Mockley Cord Marked Vessel from Level I Feature 3 18CV272
(compare with Plate 7)

Figure 13
Figure 14
Orifice diameter range 18CV272 rims

sample=9

- Mockley Plain
- Mockley Cord
- Mockley Net
Plan and Cross Section Feature 6 18CV272

Figure 15
I--organic sandy loam 10yr3/4
II--densely packed oyster and other shell
III--organic fine sandy loam 10yr3/4-4/4 with shell lenses
IV--coarse sandy loam with organic lenses 10 2.5y4/4
V--coarse sandy loam 2.5y4/4 "slump"

Feature 3 18 CV272 South and West Wall Profiles

Figure 16
Plan and cross section of postmolds associated with Feature 3

Figure 17
Plan and profile Gravel Stain 1

Feature 3
Post mold

limits of hand excavation

Machine scraped
Gravel stain 1

Plan

2.5 ft

Profile

plow zone

b horizon

c horizon with lenses

auger hole

1 ft

Plan and profile Gravel Stain 1

Figure 18

69
Plan and Cross Section Features 17 and 11, 18CV272

Feature 17

Feature 11

Plan and Cross Section Features 17 and 11, 18CV272

Figure 19
Plan and Cross Section of Features 7 and 8 18CV272

Feature 8

Plan

Heavy charcoal 10yr4/6
Scattered charcoal 10yr4/4

Cross section

Charcoal
Mottled charcoal
Mottled charcoal
Edge of profile cut

Feature 7

Plan

Some charcoal 10yr3/3

Cross section

Some charcoal 10yr3/3
Edge of profile cut

Plan and Cross Section of Features 7 and 8 18CV272

Figure 20
Plan and Cross Section of Features 23-26

Figure 21
Plan and Profile Feature 27 18CV272

Figure 22

73
Figure 23

18CV272 schematic plan

Northwestern Feature Cluster

Feature 3 Cluster

directions of Feature 3 fill throw

Southern Feature Cluster

Stream

Springhead

not to scale
<table>
<thead>
<tr>
<th>Feature 3</th>
<th>Feature 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/type</td>
<td>flaks</td>
</tr>
<tr>
<td>quartz</td>
<td>35</td>
</tr>
<tr>
<td>quartzite</td>
<td>12</td>
</tr>
<tr>
<td>rhyolite</td>
<td>146</td>
</tr>
<tr>
<td>jasper</td>
<td>5</td>
</tr>
<tr>
<td>chert</td>
<td>3</td>
</tr>
<tr>
<td>grn chert</td>
<td>2</td>
</tr>
<tr>
<td>argillite</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/type</td>
</tr>
<tr>
<td>quartz</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/type</td>
</tr>
<tr>
<td>quartz</td>
</tr>
<tr>
<td>quartzite</td>
</tr>
<tr>
<td>rhyolite</td>
</tr>
<tr>
<td>jasper</td>
</tr>
<tr>
<td>chert</td>
</tr>
<tr>
<td>grn chert</td>
</tr>
<tr>
<td>argillite</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/type</td>
</tr>
<tr>
<td>quartz</td>
</tr>
<tr>
<td>quartzite</td>
</tr>
<tr>
<td>rhyolite</td>
</tr>
<tr>
<td>jasper</td>
</tr>
<tr>
<td>chert</td>
</tr>
<tr>
<td>grn chert</td>
</tr>
<tr>
<td>argillite</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/type</td>
</tr>
<tr>
<td>quartz</td>
</tr>
<tr>
<td>quartzite</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/type</td>
</tr>
<tr>
<td>quartz</td>
</tr>
<tr>
<td>quartzite</td>
</tr>
<tr>
<td>rhyolite</td>
</tr>
<tr>
<td>jasper</td>
</tr>
<tr>
<td>chert</td>
</tr>
<tr>
<td>grn chert</td>
</tr>
<tr>
<td>argillite</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18CV271-272 Surface Collection less stripped area</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/type</td>
</tr>
<tr>
<td>quartz</td>
</tr>
<tr>
<td>quartzite</td>
</tr>
<tr>
<td>rhyolite</td>
</tr>
<tr>
<td>jasper</td>
</tr>
<tr>
<td>chert</td>
</tr>
<tr>
<td>grn chert</td>
</tr>
<tr>
<td>argillite</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18CV272 1987 Surface Collection Stripped Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/type</td>
</tr>
<tr>
<td>quartz</td>
</tr>
<tr>
<td>quartzite</td>
</tr>
<tr>
<td>rhyolite</td>
</tr>
<tr>
<td>jasper</td>
</tr>
<tr>
<td>chert</td>
</tr>
<tr>
<td>grn chert</td>
</tr>
<tr>
<td>argillite</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

Total lithic artifacts by functional categories and various proveniences 18CV272-271
Length-width measurements Piscataway and Selby Bay points, Patuxent Point 18CV272, 271, and 278

Table 2

<table>
<thead>
<tr>
<th>Point Type and Provenience</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piscataway (quartz) 18CV272 Surface</td>
<td>35.8</td>
<td>18.2</td>
</tr>
<tr>
<td>Piscataway (quartz) 18CV272 Surface</td>
<td>39</td>
<td>17.5</td>
</tr>
<tr>
<td>Piscataway (quartz) 18CV272 Surface</td>
<td>31.5</td>
<td>14.4</td>
</tr>
<tr>
<td>Piscataway (quartz) 18CV272 Surface</td>
<td>26.2</td>
<td>14.4</td>
</tr>
<tr>
<td>Piscataway (quartz) 18CV272 Surface</td>
<td>28.3</td>
<td>15</td>
</tr>
<tr>
<td>Piscataway (quartz) 18CV272 Surface</td>
<td>26.9</td>
<td>12.2</td>
</tr>
<tr>
<td>Piscataway (quartz) 18CV278 Surface</td>
<td>22.8</td>
<td>17.4</td>
</tr>
<tr>
<td>Piscataway (quartz) 18CV278 Surface</td>
<td>24.5</td>
<td>15.2</td>
</tr>
<tr>
<td>Piscataway (quartz) GS2 18CV272</td>
<td>25.6</td>
<td>11.9</td>
</tr>
<tr>
<td>Piscataway (quartz) 18CV272 Feature 3</td>
<td>39.8</td>
<td>15.7</td>
</tr>
<tr>
<td>Piscataway (jasper) 18CV272 Feature 3</td>
<td>35</td>
<td>16.6</td>
</tr>
<tr>
<td>Piscataway (quartzite) 18CV272 Feature 3</td>
<td>35</td>
<td>14.9</td>
</tr>
<tr>
<td>Selby Bay (argillite) 18CV272 Feature 3</td>
<td>42.8</td>
<td>28.1</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>3.6</td>
<td>2.2</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>50.3</td>
<td>25.7</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>44.4</td>
<td>17.5</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>61.7</td>
<td>25.5</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>34.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>49.6</td>
<td>23.9</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>3.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>5.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV272 Surface</td>
<td>3.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV278 Surface</td>
<td>48.3</td>
<td>2.6</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV278 Surface</td>
<td>54.5</td>
<td>24.1</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV278 Surface</td>
<td>44.5</td>
<td>23.2</td>
</tr>
<tr>
<td>Selby Bay (rhyolite) 18CV278 Surface</td>
<td>51.4</td>
<td>15.2</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Feature 3</th>
<th>Feature 2</th>
<th>Feature 4</th>
<th>Feature 1</th>
<th>Feature 6</th>
<th>Feature 27</th>
<th>Surface collection 1987/88</th>
</tr>
</thead>
<tbody>
<tr>
<td>mater/pres-abs</td>
<td>presence</td>
<td>absence</td>
<td>total</td>
<td>mater/pres-abs</td>
<td>presence</td>
<td>absence</td>
</tr>
<tr>
<td>quartz</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>quartz</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>quartzite</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>quartzite</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>rhyolite</td>
<td>0</td>
<td>146</td>
<td>146</td>
<td>rhyolite</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>jasper</td>
<td>7</td>
<td>5</td>
<td>12</td>
<td>jasper</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>chert</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>chert</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>green chert</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>green chert</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>27</td>
<td>192</td>
<td>219</td>
<td>total</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Presence/absence of cobble cortex on debitage from 18CV272 and 271
<table>
<thead>
<tr>
<th>Raw material</th>
<th>0-20mm</th>
<th>21-40mm</th>
<th>41-60mm</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartz</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>quartzite</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>rhyolite</td>
<td>42</td>
<td>20</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>chert</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>jasper</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>green chert</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>argillite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>73</td>
<td>36</td>
<td>1</td>
<td>110</td>
</tr>
</tbody>
</table>

Feature 3

<table>
<thead>
<tr>
<th>Raw material</th>
<th>0-20mm</th>
<th>21-40mm</th>
<th>41-60mm</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartz</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>quartzite</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>rhyolite</td>
<td>28</td>
<td>18</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>chert</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>jasper</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>green chert</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>argillite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>51</td>
<td>19</td>
<td>0</td>
<td>70</td>
</tr>
</tbody>
</table>

CV272 various contexts (1988)

<table>
<thead>
<tr>
<th>Raw material</th>
<th>0-20mm</th>
<th>21-40mm</th>
<th>41-60mm</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartz</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>quartzite</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>rhyolite</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>chert</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>jasper</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>green chert</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>argillite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>

Feas 1, 2, and 4

<table>
<thead>
<tr>
<th>Raw material</th>
<th>0-20mm</th>
<th>21-40mm</th>
<th>41-60mm</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartz</td>
<td>39</td>
<td>17</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>quartzite</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>rhyolite</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>chert</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>jasper</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>green chert</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>argillite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>43</td>
<td>23</td>
<td>2</td>
<td>68</td>
</tr>
</tbody>
</table>

Surface (1987) 18CV272

<table>
<thead>
<tr>
<th>Raw mat</th>
<th>0-20mm</th>
<th>21-40mm</th>
<th>41-60mm</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartz</td>
<td>77</td>
<td>38</td>
<td>0</td>
<td>115</td>
</tr>
<tr>
<td>quartzite</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>rhyolite</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>chert</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>jasper</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>green chert</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>argillite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>96</td>
<td>59</td>
<td>5</td>
<td>160</td>
</tr>
</tbody>
</table>

18CV271 Surface

<table>
<thead>
<tr>
<th>Raw mat</th>
<th>0-20mm</th>
<th>21-40mm</th>
<th>41-60mm</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartz</td>
<td>77</td>
<td>38</td>
<td>0</td>
<td>115</td>
</tr>
<tr>
<td>quartzite</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>rhyolite</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>chert</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>jasper</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>green chert</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>argillite</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>96</td>
<td>59</td>
<td>5</td>
<td>160</td>
</tr>
</tbody>
</table>

18CV271 Surface

Whole flake length measurements various materials and various contexts 18CV271-272

Table 4
<table>
<thead>
<tr>
<th>Prov</th>
<th>Sherd</th>
<th>Mock CM</th>
<th>Mock NM</th>
<th>Mock Pl</th>
<th>Mock Un</th>
<th>Rapp FM</th>
<th>Pop Cr NM</th>
<th>Accok CM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fea 3</td>
<td>Rim</td>
<td>3</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>63</td>
<td>74</td>
<td>80</td>
<td>159</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>393</td>
</tr>
<tr>
<td>Fea 2</td>
<td>Rim</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>2</td>
<td>14</td>
<td>1</td>
<td>31</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Fea 4</td>
<td>Rim</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>14</td>
<td>14</td>
<td>24</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>111</td>
</tr>
<tr>
<td>Fea 6</td>
<td>Rim</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Fea 1</td>
<td>Rim</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fea 27</td>
<td>Rim</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>0</td>
<td>19</td>
<td>5</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Total</td>
<td>Rim</td>
<td>3</td>
<td>18</td>
<td>3</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>79</td>
<td>129</td>
<td>110</td>
<td>257</td>
<td>1</td>
<td>4</td>
<td>26</td>
<td>606</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>82</td>
<td>147</td>
<td>113</td>
<td>257</td>
<td>1</td>
<td>4</td>
<td>28</td>
<td>632</td>
</tr>
</tbody>
</table>

Ceramic categories various proveniences 18CV272

Table 5
<table>
<thead>
<tr>
<th>Level</th>
<th>quartz</th>
<th>quartzite</th>
<th>rhyolite</th>
<th>chert</th>
<th>jasper</th>
<th>grnchert</th>
<th>argillite</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>6</td>
<td>5</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>1</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>MISC</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>1988</td>
<td>27</td>
<td>11</td>
<td>57</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>117</td>
</tr>
<tr>
<td>1987</td>
<td>9</td>
<td>1</td>
<td>89</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>total</td>
<td>36</td>
<td>12</td>
<td>146</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>219</td>
</tr>
</tbody>
</table>

Flake count all materials by level Feature 3

Table 6
Plate I (page 83)

Aerial Photograph of Patuxent Point Looking West

The plowed field in the immediate foreground is Area D. 18CV272 is plowed section in lower left center of picture. Excavations took place at the end of the field closest to the woodline where the stream is located. The springhead is to immediate left of the field. The tree line at the right hand side of the field is for fence row only. The mouth of Hungerford Creek is in the upper right hand corner. The Patuxent River forms the background at the top of the picture.

Plate 2 (Page 84)

Ground Level View of 18CV272 Looking to the Northwest

The felled trees in the middle of the photograph were dumped there from elsewhere; however they effectively marked the limits of the area which was ultimately stripped for archeological purposes. The vegetation at the extreme left center marks the head of the spring. The standing trees in the background extending from the center and upper left center mark the larger stream. The tree line extending from center to the left margin of the photograph marks a fence row. The area which was stripped is essentially south, west and northwest of the pile of trees. The Southern Feature Cluster lay in the cleared area between the felled trees and the trees bordering the stream in the left center of the photograph.
Plate 3 (page 86)

Profile of Levels I-II of the West Wall of the Southwest Quadrant of Feature 3, 18CV272

This photograph shows the thickness of the shell deposit in Level II of the southwest quadrant of Feature 3. Layer III beneath is still organic but contained much less shell. Excavation of the northwest quadrant has been completed. The cloth resting on the pedestal in the lower right center was moistened to cover a whole turtle carapace which extended into the wall. Layer I capped most the shells but also contained considerable numbers of artifacts, especially large pieces of pottery. The shells from Layer II came to the surface at the base of the plow zone; some of these shells had no doubt been disturbed by the plow.

Plate 4 (page 87)

Feature 3 with Post Molds A-D after Completion of Excavation

This view of Feature 3 is looking toward the west. Subsequent to this photograph being taken a deeper excavation was made into the pit through what proved to be a clay cap. The post molds have all been cross-sectioned.
Plate 5 (page 89)

Projectile Points from the Phase II Study

Top row: Piscataway points from Area D (18CV271 and 272) all quartz

Bottom Row: Selby Bay points from Area D (18CV271 and 272) all rhyolite
Plate 6 (page 91)

Projectile Points from the Phase III Study

Top Row

Piscataway points from Feature 3
Left: quartzite Center: jasper Right: quartz

Middle Row

Piscataway Preforms from Feature 3
Left: quartz Right: chert with cobble cortex

Bottom Row

Selby Bay points from 18CV272
Left: argillite from Feature 3 right: rhyolite from surface

Plate 7 (page 92)

Ceramics from the Phase III Study

Left: Mockley Cord Marked mended partial vessel from Level I Feature 3
Note termination of cord marking just below partial shoulder

Right top: Mockley Plain rim from Gravel Stain I
Right bottom: Mockley Plain rim from Level IV Feature 3
Table 1
Species List
Feature 6

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>NISP</th>
<th>%NISP</th>
<th>MNI</th>
<th>%MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odocoileus</td>
<td>white tailed</td>
<td>2</td>
<td>100.00</td>
<td>1</td>
<td>100.00</td>
</tr>
<tr>
<td>virginianus</td>
<td>deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large mammals</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>3</td>
<td>100.00</td>
<td>1</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Table 2
Species List
Feature 27

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>NISP</th>
<th>%NISP</th>
<th>MNI</th>
<th>%MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odocileus virginianus</td>
<td>white tailed deer</td>
<td>6</td>
<td>3.37</td>
<td>1</td>
<td>20.00</td>
</tr>
<tr>
<td>Terepene carolinensis</td>
<td>box turtle</td>
<td>15</td>
<td>8.40</td>
<td>1</td>
<td>20.00</td>
</tr>
<tr>
<td>Microtus sp.</td>
<td>vole</td>
<td>1</td>
<td>1.68</td>
<td>2</td>
<td>40.00</td>
</tr>
<tr>
<td>Norone sp.</td>
<td>rockfish/white perch</td>
<td>1</td>
<td>0.56</td>
<td>1</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td>large mammal</td>
<td>13</td>
<td>7.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>small mammal</td>
<td>2</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>large bird</td>
<td>1</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bird</td>
<td>7</td>
<td>3.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fish</td>
<td>129</td>
<td>72.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>snake</td>
<td>1</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>indeterminable</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>303</td>
<td>99.92</td>
<td>5</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Table 3
Species List
Feature 3 Level I

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>NISP</th>
<th>%NISP</th>
<th>MNI</th>
<th>%MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odocoileus</td>
<td>virginianus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>white tailed</td>
<td>2</td>
<td>12.50</td>
<td>1</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large mammal</td>
<td>8</td>
<td>50.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>turtle</td>
<td>1</td>
<td>6.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indeterminable</td>
<td>5</td>
<td>31.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>16</td>
<td>100.00</td>
<td>1</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>NISP</td>
<td>%NISP</td>
<td>MNI</td>
<td>%MNI</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Odocoileus</td>
<td>white tailed</td>
<td>20</td>
<td>1.77</td>
<td>1</td>
<td>11.00</td>
</tr>
<tr>
<td>virginianus</td>
<td>deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urocyon</td>
<td>grey fox</td>
<td>1</td>
<td>0.09</td>
<td>1</td>
<td>11.00</td>
</tr>
<tr>
<td>cinereoargentus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microtus sp.</td>
<td>vole</td>
<td>6</td>
<td>0.53</td>
<td>1</td>
<td>11.00</td>
</tr>
<tr>
<td>Terepene</td>
<td>box turtle</td>
<td>12</td>
<td>1.06</td>
<td>1</td>
<td>11.00</td>
</tr>
<tr>
<td>carolinensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malyclemys</td>
<td>diamond back</td>
<td>4</td>
<td>0.35</td>
<td>1</td>
<td>11.00</td>
</tr>
<tr>
<td>terrepine</td>
<td>turtle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pseudomys sp.</td>
<td>cooter</td>
<td>1</td>
<td>0.09</td>
<td>1</td>
<td>11.00</td>
</tr>
<tr>
<td>Norone americanus</td>
<td>white perch</td>
<td>5</td>
<td>0.44</td>
<td>2</td>
<td>22.00</td>
</tr>
<tr>
<td>Crotalid sp.</td>
<td>poisonous snake</td>
<td>4</td>
<td>0.35</td>
<td>1</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>large mammal</td>
<td>65</td>
<td>5.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>medium mammal</td>
<td>7</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>small mammal</td>
<td>5</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bird</td>
<td>24</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>turtle</td>
<td>18</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fish</td>
<td>681</td>
<td>60.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>snake</td>
<td>7</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>indeterminable</td>
<td>267</td>
<td>23.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>1127</td>
<td>99.97</td>
<td>9</td>
<td>110.00</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>NISP</td>
<td>%NISP</td>
<td>MNI</td>
<td>%MNI</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Odocoileus</td>
<td>white tailed</td>
<td>9</td>
<td>1.21</td>
<td>1</td>
<td>17.00</td>
</tr>
<tr>
<td>virginianus</td>
<td>deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursus americanus</td>
<td>bear</td>
<td>1</td>
<td>0.13</td>
<td>1</td>
<td>17.00</td>
</tr>
<tr>
<td>Castor candensis</td>
<td>beaver</td>
<td>1</td>
<td>0.13</td>
<td>1</td>
<td>17.00</td>
</tr>
<tr>
<td>Sciurus carolinensis</td>
<td>squirrel</td>
<td>1</td>
<td>0.13</td>
<td>1</td>
<td>17.00</td>
</tr>
<tr>
<td>Terepene</td>
<td>box turtle</td>
<td>2</td>
<td>0.27</td>
<td>1</td>
<td>17.00</td>
</tr>
<tr>
<td>carolinensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norone saxatilis</td>
<td>rockfish</td>
<td>3</td>
<td>0.40</td>
<td>1</td>
<td>17.00</td>
</tr>
<tr>
<td>Norone sp.</td>
<td>rockfish/</td>
<td>18</td>
<td>2.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white perch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>large mammal</td>
<td>45</td>
<td>6.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>medium mammal</td>
<td>2</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>large bird</td>
<td>14</td>
<td>1.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bird</td>
<td>2</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>turtle</td>
<td>47</td>
<td>6.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fish</td>
<td>87</td>
<td>11.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>indeterminable</td>
<td>510</td>
<td>68.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>742</td>
<td>100.21</td>
<td>6</td>
<td>102.00</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>NISP</td>
<td>%NISP</td>
<td>MNI</td>
<td>%MNI</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Didelphis marsupialis</td>
<td>opossum</td>
<td>3</td>
<td>1.97</td>
<td>1</td>
<td>33.00</td>
</tr>
<tr>
<td>Urocyon cinereoargenteus</td>
<td>grey fox</td>
<td>1</td>
<td>0.66</td>
<td>1</td>
<td>33.00</td>
</tr>
<tr>
<td>Malcylemys terrepine</td>
<td>diamond back turtle</td>
<td>69</td>
<td>45.39</td>
<td>1</td>
<td>33.00</td>
</tr>
<tr>
<td>turtle</td>
<td>6</td>
<td>3.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>turtle</td>
<td>35</td>
<td>23.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fish</td>
<td>35</td>
<td>23.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>snake</td>
<td>1</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indeterminable</td>
<td>2</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>152</td>
<td>100.00</td>
<td>3</td>
<td>99.00</td>
<td></td>
</tr>
</tbody>
</table>
Appendix II

Faunal Analysis Features 1-4 18CV272 and Test Pit 2 18CV279

Joseph Balicki
Arlington, Virginia
February 1988
Introduction

A total of 458 vertebrate and 47 invertebrate faunal remains were included in the material analyzed for this report. The fish bones are being analyzed separately except for those few which were contained in the sample studied here. These materials were collected from four prehistoric features and one test pit into a portion of an historic feature. Of the total remains, 54% of the vertebrates and 99% of the invertebrates were identified to the family, genus, or species. The vertebrate remains which could not be identified were mainly bone fragments from long bones which were too small to be identified. The faunal inventory is divided by field specimen number (F.S.) assignments. The summaries are by excavation unit with F.S. numbers parenthetically noted.

A minimum number of individuals (MNI) was calculated using paired left and right bone elements. The minimum number of individuals was calculated for each excavation unit. In general, bone preservation was excellent although the condition of long bones and skulls was not as good as the smaller bones. The methods used in this analysis followed standard zooarchaeological analytical techniques. Identifications were aided by comparative collections at Catholic University.

Summaries

TPAVIII-2 (F.S. 146 and 147)

The test pit into the historic feature at 18CV279 (TPAVIII-2) contained remains of box turtle (Terrapene carolina), deer (Odocoileus virginianus), untyped fish, barnacle (Balanus spp.), and oyster (Crassostrea virginianus). The minimum number of individuals is one for each of these species.

Feature 1 (F.S. 3)

Feature 1 contained only two unidentifiable long bone shank fragments. Butchering marks were evident on both fragments.
Feature 2 (F.S. 7)

Faunal remains from this feature consisted of one opposum (*Didelphis marsupialis*) and one box turtle. The remainder of the bones were too fragmentary to be identified. None of the bones exhibited any signs of modification.

Feature 3 (F.S. 12)

Deer and box turtle were the only two specimens recognized from this feature. The material recovered was in poor condition and extremely fragmentary. No modification was noted.

Feature 4 (F.S. 148, 149, 202, 248 and 249)

The material recovered from this feature represents the majority of the sample. F.S. 149 consists of the faunal remains from the plow zone and comprises two unidentifiable bone fragments. In the remainder of the samples, animals represented are deer, striped skunk (*Mephitis mephitis*), box turtle, untyped fish, untyped bird, woodland vole (*Microtus pinetorum*) and domestic dog (*Canis familiaris*). Invertebrates represented are three barnacles, eleven solarielles (*Solariella spp.*), two oyster drills (*Urosalpinx cinerea*), one soft shell clam (*Mya arenaria*) and 19 stout razor clams (*Tagelus plebeius*).

This feature contained a probable dog burial as almost all of the dog skeleton is present. Some of the deer bones appear to have breaks which would indicate butchering. The dog bones meanwhile did not exhibit any signs of modification. In addition, the dog bones were in an extremely well preserved condition indicating they were buried with the flesh rather than left uncovered.

The invertebrate material is interesting in that it represents a range of specimens from a zone which would have been fairly high in salinity. The faunal specimens from Feature 4 represent a wide range of activity at the site. Six probable food items are present (deer, fish, soft shell clam, stout razor clam, bird and oysters).
FAUNAL INVENTORY

Feature 2

F.S.# 7

<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>Unidentified small mammal</td>
<td>Innominate frag.</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>Opossum (Didelphis marsupialis)</td>
<td>Occipital frag.</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>Opossum (Didelphis marsupialis)</td>
<td>Maxilla frag. (left)</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>Opossum (Didelphis marsupialis)</td>
<td>Mandible frag. (right)</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>Unidentified mammal</td>
<td>Long bone shank frags.</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>Box turtle (Terrapene carolina)</td>
<td>Carapace</td>
</tr>
</tbody>
</table>

N= 8
Appendix 1

Faunal Analysis Features 3, 6, and 27 18CV272

Edward Otter
October 1988
Methodology

The faunal material used in this study was subjected to the standard faunal analysis techniques of visual examination, cataloging, and tabularization. The integrity of the various provenience units has been maintained in order to permit inter-unit comparisons. A comparative osteological collection was used as an aid in the identification of species.

Information which was deemed important for this study includes the species of animal, anatomical portion of bone fragments, human modifications, and animal gnawing. A generalized evaluation of the state of preservation of the bones from the various units is also provided. In the following species list the term NISP (number of identified specimens) is used to denote the number of bone fragments identified to a particular taxonomic unit. MNI (minimum number of individuals) refers to the minimum number of animals of a species represented in the assemblage.

Analysis

The small size of the overall sample prohibits detailed interpretations concerning the lifeways of the site inhabitants and their surrounding environment. The goal of this analysis is to provide a quantified list of faunal remains from the site which will be of use in future work at the site and in comparisons of faunal remains from the site.

Three features from 18CV272 yielded material for this study: Feature 3, Feature 6, and Feature 27. Feature 3 yielded the largest quantity of remains with 2037 bone fragments being counted. Feature 27 provided 303 bone fragments, and 3 fragments were recovered from Feature 6. The fact that few species were identified is seen as being related to the overall size of the sample (Grayson 1984:132) and the condition of the remains, some being eroded beyond recognition and in some cases (Feature 3, Level 3) diagnostic features being masked by calcium deposits.
Feature 6

Three bone fragments were recovered from Feature 6 during excavation. No fragments were recovered from a water screen sample taken from the north half of the feature. All three fragments were from large mammals, two of them identified as white tailed deer (Table 1).

Feature 27

The faunal remains from the south half of Feature 27 were presented for analysis. This material was in two samples, a water screen sample which was sieved through window screen (1/16” mesh), and the sample recovered during excavation. The south half yielded a total of 303 fragments: 37 from the excavation, and the remaining 266 from the water screening. Most of the fish remains, including the only diagnostic fragment, all of the small mammal bones, and all of the snake remains were taken from the water screen sample.

Deer, box turtle, voles, and rockfish or white perch remains were also recovered from this feature. Fish was the most common class of animal in terms of the number of bones identified. Turtle, large mammal, bird, small mammals and snakes were also represented in descending order (Table 2).

The material from this provenience was fairly well preserved. Carnivore gnawing was evident on one deer phalange.

Feature 3

Feature 3 was excavated in quadrants by natural levels. Faunal material was recovered from fifteen provenience units within the feature. This material was grouped by horizontal units which followed the feature stratigraphy. 2037 bone fragments were recovered from this feature, including 12 fragments which were unprovenienced. Most of the remains were taken from Level II.

Level I yielded 16 bone fragments (Table 3). Large mammal bones were the most common (ten fragments), two of which were deer. A single
unidentified turtle fragment was recovered, and five fragments could not be assigned to any category.

Level II contained 1,127 bone fragments (Table 4). Fish was the best represented category with 686 fragments, five of which were white perch. Deer was represented by 20 fragments. Other large mammal bones totaled 65. Grey fox represented the only medium-sized mammal in this level; there were also seven other medium size mammal bones. Three types of turtles were present among 35 fragments. Box turtle was represented by 12 fragments, diamond back terrapin was represented by four fragments, and one fragment of cooter was recovered. There were 18 turtle fragments unidentified to the genus level. Birds were represented by 24 fragments but no species could be identified. Snake comprised 11 fragments; four of these were from poisonous snakes, and the others could not be classified to family. Of 11 small mammal remains, six were from voles. There were also 267 fragments which could not be identified to any category.

Two fragments of large mammal bone clearly show human modification. One fragment had been pointed into an awl. The second fragment is part of a deer metapodial which had been made into a beamer.

The bones from Level III totaled 742 (Table 5). Fish remains totaled 108. Of this total, three were identified as rockfish and 18 others were determined to be either rockfish or white perch. The other 87 were indeterminable to genus. Large mammal remains totaled 55. A single bear tooth was recovered, as were nine deer bones. The remaining 45 fragments were not identified beyond large mammal. Medium mammals were represented by a single beaver fragment, one squirrel bone, and two indeterminable fragments. Turtles were represented by 49 fragments, two of which were box turtle. Bird bones totaled 16 with no identified species. Another 510 bone fragments were indeterminable to any category.

Level IV yielded 152 bone fragments (Table 6). Turtles provided most of these. A single turtle shell from a diamond back terrapin yielded 69 fragments, and there were another 35 unidentified turtle fragments. Fish remains totaled 35 fragments, but no species were identified. Unidentified large mammal bones totaled six. Medium mammals were
represented by three oppossum bones and one grey fox bone. A single snake bone was present and another two fragments were indeterminable to any category.

Results

The small number of bones does not allow for detailed interpretations. There is insufficient data to determine whether the various levels of Feature 3 were deposited on a seasonal basis. The species that were present do not indicate any particular focus to hunting. With Middle Woodland sites in southern Maryland being found primarily along marsh ecosystems, it might be expected that marsh animals would have been a focus of hunting. Evidence from this site does not indicate this. No muskrats, ducks, or geese were recorded. Again, this may be a factor of sample size.
<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Metacarpal frag.</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>Unidentified Mammal</td>
<td>Bone frags.</td>
</tr>
<tr>
<td>18</td>
<td>62</td>
<td>Box turtle (Terrapene carolina)</td>
<td>Carapace</td>
</tr>
<tr>
<td>N=</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FAUNAL INVENTORY

TPAVIII-2
F.S.# 147

<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species or Taxon</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>28</td>
<td>Fish (Osteichtyes)</td>
<td>Scales</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Fish (Osteichtyes)</td>
<td>Vertebra</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>Fish (Osteichtyes)</td>
<td>Untyped skull frags.</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Barnacle (Balanus spp.)</td>
<td>Whole</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Unidentifiable</td>
<td>Shell frags.</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Unidentified mammal</td>
<td>Rib frags.</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>Unidentifiable mammal</td>
<td>Bone frags.</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Box turtle (Terrapene carolina)</td>
<td>Carapace</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Unidentified mammal</td>
<td>Long bone shank frag.</td>
</tr>
</tbody>
</table>

N = 18
<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>Deer (Odocoileus virginianus)</td>
<td>1st Phalanx (right)</td>
</tr>
<tr>
<td>6</td>
<td>66</td>
<td>Oyster (Crassostrea virginica)</td>
<td>Shell frags.</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Metatarsal frag.</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Molar</td>
</tr>
</tbody>
</table>

N = 9
FAUNAL INVENTORY

Feature 1

F.S. # 3

<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>100</td>
<td>Unidentified mammal</td>
<td>Long bone shank frags.</td>
</tr>
</tbody>
</table>

N=2
FAUNAL INVENTORY

F.S. # 149

Feature 4

<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>Unidentified mammal</td>
<td>Rib frag.</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>Unidentified mammal</td>
<td>Vertebra frag.</td>
</tr>
</tbody>
</table>

`N = 2`
<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>Deer (Odocoileus virginianus)</td>
<td>1st Molar</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Phalanx frag. (left)</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>Unidentified mammal</td>
<td>Skull frag.</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>Striped skunk (Mephitis mephitis)</td>
<td>Ulna (right)</td>
</tr>
</tbody>
</table>

N= 4
FAUNAL INVENTORY

Feature 4
F.S. 201

<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Metacarpal frag.</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Scapula frag., proximal (left)</td>
</tr>
</tbody>
</table>

N= 2
<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Femur frag., proximal (right)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Radius frag., distal (right)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Metacarpal (left)</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>Unidentified mammal</td>
<td>Rib frags.</td>
</tr>
<tr>
<td>54</td>
<td>76</td>
<td>Unidentifiable mammal</td>
<td>Long bone shank frags.</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>Box turtle (Terrapene carolina)</td>
<td>Carapace frags.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Box turtle (Terrapene carolina)</td>
<td>Vertebra</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Fish (Osteichthytes)</td>
<td>Skull frag. (Hyomandib)</td>
</tr>
</tbody>
</table>

N= 71
FAUNAL INVENTORY

Feature 4

F.S.# 249

<table>
<thead>
<tr>
<th>N</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deer (Odocoileus virginianus)</td>
<td>carpal</td>
</tr>
<tr>
<td>1</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Humerus shaft frag.</td>
</tr>
<tr>
<td>1</td>
<td>Deer (Odocoileus virginianus)</td>
<td>2nd Pre-molar (lower left)</td>
</tr>
<tr>
<td>1</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Rib Frag.</td>
</tr>
<tr>
<td>3</td>
<td>Box turtle (Terrapene carolina)</td>
<td>Carapace frags.</td>
</tr>
<tr>
<td>3</td>
<td>Unidentified Bird (Aves)</td>
<td>Bone frags.</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Calcaneus (left)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Sacrum</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Radius (left)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Radius frag., distal (right)</td>
</tr>
<tr>
<td>3</td>
<td>Dog (Canis familiaris)</td>
<td>Tibia frag., distal (left)</td>
</tr>
<tr>
<td>3</td>
<td>Dog (Canis familiaris)</td>
<td>Tibia shaft frag.</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Tibia shaft frag. (right)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Humerus frag., distal (left)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Humerus frag., distal (left)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Femur frag., distal (left)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Femur frag., distal (right)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Femur frag., proximal (left)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Innominate frag. (left)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Innominate frag. (right)</td>
</tr>
<tr>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Ilium frag.</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>Species</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Dog (Canis familiaris)</td>
</tr>
<tr>
<td>51</td>
<td>29</td>
<td>Unidentifiable mammal</td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>Unidentifiable mammal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feature 4
FAUNAL INVENTORY

<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>Species</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Barnacle (Balanus spp.)</td>
<td>Whole shells</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>(Solaria spp.)</td>
<td>Whole shells</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Oyster drill (Urosalpinx cinerea)</td>
<td>Whole shells</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Soft shell clam (Mya arenaria)</td>
<td>Shell frag.</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>Stout razor clam (Tagelus plebeius)</td>
<td>Shell frags.</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Woodland vole (Microtus pinetorum)</td>
<td>Skull</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
<td>Femur frag., proximal</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Maxilla frags.</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Dog (Canis familiaris)</td>
<td>Innominante frags.</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
<td>Ulna frag., distal</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Vertebra frags.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>Metacarpal frags.</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
<td>3rd Phalanx</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Dog (Canis familiaris)</td>
<td>2nd Phalanx</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Dog (Canis familiaris)</td>
<td>1st Phalanx</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Dog (Canis familiaris)</td>
<td>Carpals</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
<td>Mandible frag.</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
<td>Scapula frag.</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
<td>Premolar</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Dog (Canis familiaris)</td>
<td>Incisor</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Striped skunk (Mephitis mephitis)</td>
<td>Mandible frag. (right)</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Striped skunk (Mephitis mephitis)</td>
<td>Canine</td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>Species</td>
<td>Element</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>--------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Humerus shaft frag.</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Deer (Odocoileus virginianus)</td>
<td>Radius frag., proximal</td>
</tr>
<tr>
<td>1</td>
<td>.5</td>
<td>Deer (Odocoileus virginianus)</td>
<td>1st Phalanx frag. (right)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Box turtle (Terrapene carolina)</td>
<td>Carapace frags.</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Box turtle (Terrapene carolina)</td>
<td>Vertebrae</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Unidentified mammal</td>
<td>Skull frags.</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Unidentified mammal</td>
<td>Rib frags.</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Unidentified mammal</td>
<td>Long bone shank frags.</td>
</tr>
<tr>
<td>86</td>
<td>48</td>
<td>unidentifiable mammal</td>
<td>Bone frags.</td>
</tr>
</tbody>
</table>

N = 179
Appendix III

Shell Analysis Features 1-4 18CV272

Keith R. Doms
Archeology Laboratory
University of Delaware
Newark, Delaware
January 1988
The following is an analysis of the shells from four features from Patuxent Point. This study of the oyster shells follows the procedures that were set forth by Bret Kent (Kent n.d.). Other shells were identified by using Morris's field guide to shells (Morris, 1973) and Aprill's Common Seashells of Delaware (Aprill, 1984). The oysters were sorted, counted, examined for indicators of salinity, water depth and growing substrait, and season of death.

Due to the extremely high number of oyster shells (4149 left and 1981 right valves), only 150 left valves were examined from each feature and only 50 of those were examined to determine their season of death. The season of death was determined by visual estimation with the aid of a 10x hand lens. The environment from which the oysters were gathered was determined by the shape and surface characteristics of the left valves.

All of the oysters examined were of the species *Crassostrea virginica*. There were two distinct types of oysters in this sample, reflecting two different growing environments. The most common type of oyster was the sand oyster. These oysters have broad shells and grow in shallow and intertidal firmly packed sand deposits. The other variety were bed oysters, these oysters have narrower shells and live on muddy sand in shallow water.

The growing season for oysters at the mouth of the Patuxent River is from mid-March to late November (Dougiallo, 1984). The seasonal breakdown that I use is as follows: Mid-March to early April is Late winter-early spring (LW/ESp); Spring is early April through May (Sp); Summer is June through August (Sm); Fall is September and November; Late Fall/Early Winter is November (LF/EW); and Winter is late November till mid-March.

Ribbing occurs on oysters that are exposed to UV light for extended periods and therefore indicates that the oyster lived in shallow or intertidal regions.

Salinity is determined by noting the presence and number of holes in the left valve caused by different sponges. For a breakdown of the 4 salinity regimes refer to the attached chart taken from Kent (Kent, n.d.).

The majority of the oysters came from shallow water and are of the sand oyster variety. They averaged about 4 years in age and grew in salinity regimes I, II, and III. The salinity presently along the lower portion of the Patuxent is classified as Salinity Regime II. You may want to check this with some more accurate data. Almost all of the oyster examined died between September and December. The oyster shells show no visible signs
forceable opening so they were probably stemmed opened. I find it curious that there is such a discrepancy in the number of left and right valves. This seems to be common in most of the sites that I have examined.

Kent, B. *Making Old Oysters Talk: Techniques of Oyster Shell Analysis*, Maryland Historical Trust Monograph Series, In Press, Annapolis

Other Finds

Fea. 2 7 terrestrial snails, 140L 142R valves of Tagelus plebius

Fea. 3 21 terrestrial snails, 1 oyster drill (Urosalpinx cinerea), 38L 54R Tagelus plebius, two of which were dead at the time of collection

Fea. 4 13 terrestrial snails, 1 mud snail (Ilyanassa obsoleta), 1 hard clam (Mercenaria mercenaria), 1 soft shell clam (Mya arenaria), 2 Tagelus plebius, 1 flat slipper (Crepidula plana), 2 fish vertebra.
animals found in a given situation. At this time no means of accomplishing this exist.

Oyster Shell (by Keith Doms)

The oysters from Block 1191 in Wilmington were examined using techniques that were derived from Kent (1981, n.d.). The shells were specifically examined for the following four characteristics: the salinity of the water from which the oysters were collected, the type of oyster (mud flat, channel, or coon) and the kind of environment in which they grew, the season of death or harvest of the oysters, and the techniques that were used to open the oysters. The salinity can be determined by the presence or absence of bore holes caused by parasitic sponges (see Table 8). The type of oyster can be determined by the size and shape of the shell which is influenced by the environment in which it is found. The season of death or harvest can be determined by examining the growth rings on the hinge or umbo of the left ventral valve of the oyster. Opening by shucking, sawing or breaking leaves certain distinctive marks on the shell.

TABLE 8
Salinity Regime Determination
Salinity regimes as indicated by combinations of small (c. truttitype) and large (c. celata) boreholes (Kent 1981, n.d.)

<table>
<thead>
<tr>
<th>Borehole Combination</th>
<th>Salinity Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>I No boreholes</td>
<td>Salinity below 10 ppt for about half of year and rarely above 20 ppt.</td>
</tr>
<tr>
<td>II Valves with small boreholes present, no valves with large boreholes</td>
<td>Salinity below 10 ppt for about one-fourth of year below 15 ppt for about half of year, and occasionally above 20 ppt.</td>
</tr>
<tr>
<td>II Valves with small boreholes more common than valves with large boreholes</td>
<td>Salinity occasionally below 15 ppt and above 20 ppt for one-fourth to half of year.</td>
</tr>
<tr>
<td>IV Valves with large boreholes as common or more common than valves with small boreholes</td>
<td>Salinity rarely below 15 ppt and above 20 ppt for most of year.</td>
</tr>
</tbody>
</table>

pt = parts per thousand
<table>
<thead>
<tr>
<th>FEA.</th>
<th>Oysters</th>
<th>Spats</th>
<th>Salinity Regime</th>
<th>Season</th>
<th>Average Age</th>
<th>Sand Bed</th>
<th>A-S. Ribbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>210L</td>
<td>66</td>
<td>I II III IV</td>
<td>F LF/EW W LW/ESP Sp Sm</td>
<td>4 yr 110</td>
<td>23</td>
<td>97 92</td>
</tr>
<tr>
<td></td>
<td>80R</td>
<td>50</td>
<td>11 39</td>
<td>48 24 12</td>
<td>8 8</td>
<td>83 17 73 69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84%</td>
<td></td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1564L</td>
<td>43</td>
<td>63 33 54</td>
<td>7 2 4 3</td>
<td>5 13</td>
<td>4 yr 82</td>
<td>65 82 101</td>
</tr>
<tr>
<td></td>
<td>1240R</td>
<td>42</td>
<td>22 36</td>
<td>13 46 6</td>
<td>10 25</td>
<td>56 44 55 67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65%</td>
<td></td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1091R</td>
<td>52</td>
<td>52 38 69</td>
<td>14 10 11</td>
<td>9 6</td>
<td>4-2 yr 133 45 100 103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>832R</td>
<td>33</td>
<td>24 43</td>
<td>28 20 22</td>
<td>8 12</td>
<td>84 28 63 65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70%</td>
<td></td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1284R</td>
<td>267</td>
<td>60 28 66</td>
<td>17 9 11</td>
<td>4 9</td>
<td>4.1 yr 115 39 82 117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>829R</td>
<td>28</td>
<td>18 43</td>
<td>34 18 22</td>
<td>8 18</td>
<td>75 25 53 76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74%</td>
<td></td>
<td>6%</td>
<td></td>
</tr>
</tbody>
</table>
F 187 Archaeological Investigations at Proposed Patuxent Point Development Phase I