Archaeological Survey of the Phase One Construction Area of Patuxent Point, Solomons Island, Calvert County, Maryland

Ed Otter (1987)
Archaeological Survey

of the

Phase One Construction Area

of

Patuxent Point,

Solomons Island,

Calvert County, Maryland

Prepared for

CRJ Associates

Camp Springs, Md.

by

Edward Otter

May 1987
Abstract

An archaeological survey of the tract of ground designated construction Phase One for the Patuxent Point development, Solomons Island, Calvert County, Maryland was conducted using surface and subsurface techniques. Nine days of field work by one individual has documented the existence of one multicomponent aboriginal site (18CU272) spanning from circa 4000 B.C. to 1600 A.D. Intact shell filled features with preserved fish and deer bones, ceramics and lithics also were observed. A historic site (18CU271) situated mostly outside of this tract was also noted. Since the prehistoric site is to be negatively impacted by the construction of townhouses as planned, further work is recommended.
Table of Contents

Introduction..................................................1
Project Area..................................................3
Culture History..............................................4
Research Goals..............................................16
Field Investigations
Recommendations...........................................31
Conclusion..................................................32
Bibliography................................................33
Map References.............................................37

Tables
Table 1: Site Probability at Patuxent Point..........11

Appendices
Appendix A: Qualifications of Investigator.............38
Appendix B: Proposed future work schedule............40
Appendix C: Maps. Figures C-1 through C-13...........42
Appendix D: Plates. Plates D-1 through D-9............60
Appendix E: Soil Profiles..................................70
Appendix F: Artifact Catalog by provenience...........101
Appendix G: Site forms.....................................131
Introduction

The archaeological work described in this report was initiated in response to plans for the development of the Patuxent Point property. This survey was funded by the developer, CRJ Associates of Camp Springs, Maryland, in anticipation of the passing of a Calvert county ordinance requiring such surveys prior to high density development in areas assessed to have a high potential for containing significant archaeological resources. The intent of the survey was to locate any archaeological resources within the area of the first phase of construction and to determine the significance of any cultural deposits in terms of their value to the study of Maryland prehistory or history so that decisions about their management could be made.

Fieldwork on this project was to begin in December 1986, but due to logistical problems the necessary plowing was completed the final week of February 1987. The author performed the archaeological fieldwork for a total of eight and one half days during the first two weeks of March, 1987. The weather was cool but did not hinder the field work.

The Patuxent Point tract is situated in the southern part of Calvert County, Maryland, on the south side of the confluence of Hungerford Creek and the Patuxent River (Fig C-1). This is in Maryland Archaeological Research area 9, the Estuarine Patuxent drainage (Fig C-2). To the south of the
property is land belonging to the United States Navy known as the Patuxent Naval Air Station, Solomons annex. Maryland Route 4 passes the property to the east.

The major historical use of the entire Patuxent Point property appears to have been agricultural. An early twentieth century residence is noted on topographic maps to the present (Fig C-1). The Phase One area has no record of any use beyond agriculture.

Because the majority of the Phase One area consisted of recently cultivated fields a survey strategy using surface surveillance in combination with subsurface testing was considered to be the most cost effective alternative. To allow for the identification of site boundaries while limiting the amount of ground to be surveyed, strips were plowed rather than the entire field. Subsurface testing was used in the cleared field to examine soil strata. In the wooded or grassy areas subsurface testing was used to examine soil strata and to provide indications of cultural deposits.

The findings of this work include the identification of two archaeological sites. A historic site partially intrudes into the Phase One tract (Fig C-17). This site dates to the early twentieth century and may date as far back as the late nineteenth century. Covering approximately 4.5 acres of the Phase One tract is a prehistoric site (Fig C-7,C-17). This site has yielded artifacts spanning from the Late Archaic
Period to the Late Woodland Period (c.4000 B.C. - A.D. 1650).

**Project Area**

The Patuxent Point project area is situated in Calvert County, Maryland, on the south side of the junction of Hungerford Creek and the Patuxent River (Fig C-1). A parcel of land approximately 80 acres in size is slated for residential development. This development is to be instituted in phases. Phase one will occupy approximately sixteen acres of land on the east side of the Patuxent Point tract (Fig C-3). It is this sixteen acre tract which has been the subject of this archaeological survey.

The Phase One tract of the Patuxent Point project varies in elevation from 30 to 42 feet above sea level. Soils within the area are Mattapex silt loam or Sassafras fine sandy loam. These soils are subject to erosion and the Mattapex soils tend to hold water and warm up late in the spring delaying planting (Matthews 1971). Otherwise they are good for agricultural purposes.

Through historic times the Patuxent Point Phase One property has been agricultural land. The majority of the tract is covered with corn stubble and weeds. Along the stream head to the north and the fenceline along the south are areas containing trees and weeds, mostly briars of various types. Part of the area to the south is a grass covered baseball field.
Culture History

Humans have lived in southern Maryland for at least the last 11,000 years. No written records exist prior to European colonization, which began in 1634, but evidence in the form of stone tools attests to the earlier presence of people. Systematic study of the past inhabitants of southern Maryland has made significant advances in the last 15 years towards understanding the changes in lifestyles through time.

In the past 15 years much work has been done to define the cultural sequence in the Middle Atlantic region of the United States and to correlate that sequence with paleo-environmental changes (Gardner 1974 and 1980, Carbone 1976, Custer 1980, Custer & Stewart 1983, Steponaitis 1986). Environmental factors are seen as affecting human existence to a greater or lesser degree depending upon individual interpretation.

The span of time humans have lived in North America prior to European colonization has been divided into three major periods based upon the materials and styles of artifacts. Subsequent research has provided information about the environments during the different time periods and the resultant changes in subsistence practices and settlement patterns (Gardner 1974, Carbone 1976, Custer 1980, Steponaitis 1986).

The environmental changes in the Middle Atlantic region
general and in southern Maryland specifically have been major
(Steponaitis 1986). Large amounts of land have been drowned as
a result of sea level rise (Steponaitis 1986:95). Plant and
animal communities have changed as temperature and
precipitation patterns changed (Carbone 1976). Through all of
this humans have lived and adapted to their changing
environment.

Paleo-Indian Period

The earliest known human occupation in southern Maryland
occurred prior to 9,000 B.C. This is known as the Paleo-Indian
period (9,000 B.C. – 7,500 B.C.). During this period the
Chesapeake Bay as we know it was non-existent. The Susquehanna
River flowed through a valley between the present eastern and
western shores of the Chesapeake with the Patuxent and Potomac
Rivers being two of the many tributaries. Much land that was
then exposed is now under water (Steponaitis 1986:95).
Temperatures, on the average, were cooler than present. Open
forests of pine and spruce existed across southern Maryland
except in the wetter areas where more deciduous plants thrived.
Seasonal changes were less pronounced (Carbone 1976).

The diagnostic artifacts of the Paleo-Indian period are
the Clovis point, a Folsom-like point and the Dalton Hardaway
Points. These projectile points have been found in
stratigraphic sequence at the Thunderbird Site (Gardner 1974)
and have come to represent three sub-divisions of the
Paleo-Indian period. Other stone implements from the Paleo-Indian period are primarily animal processing tools which has led to the interpretation that hunting was a primary subsistence strategy during this period.

Few Paleo-Indian tools have been found in southern Maryland (Otter 1984:17). In Calvert County three Clovis style projectile points have been found, attesting to the presence of people in the region during this period. Two factors contribute to the relative lack of sites from this period. With so much land of the Paleo-Indian period under water many of the sites which would exist are now submerged or destroyed through littoral transgression (Steponaitis 1986:95). The second factor is a lack of primary sources of cryptocrystalline lithic materials such as jasper and chert. Paleo-Indian sites are centered around sources of cryptocrystalline materials (Gardner 1980) and no such lithic sources exist in southern Maryland.

Archaic Period

The Archaic period (7,500 B.C. - 1,000 B.C.) can be characterized as a time of changing climate with conditions becoming more like the present. Sea level continued to rise throughout this period but the rate slowed considerably toward the end (Belknap & Kraft 1977). Coniferous forests gave way to more deciduous types (Carbone 1976, Custer 1980, Steponaitis 1986:98).
Early Archaic Period

The Early Archaic period (7,500 B.C. - 6,000 B.C.) is seen as an outgrowth of the Paleo-Indian period (Gardner 1974:3). Diagnostic artifacts of this period are serrated projectile points of the Kirk and Palmer types and bifurcate base points of the Kanawah, Lecroy and St. Albans types. The Early Archaic people were not as selective of lithic types for tool manufacture as were the Paleo-Indian people. This is reflected in the increased number of sites in southern Maryland relative to the Paleo-Indian period. Sites tend to be found near streams in the vicinity of lithic resources: cobble deposits. The highest concentration of Early Archaic sites known in southern Maryland is in the Zekiah Swamp, in Charles County. A few sites from the Early Archaic period are known to exist in Calvert County; all of them along the Patuxent River (Otter 1984).

Middle Archaic Period

Stanley and Morrow Mountain Points are the diagnostic artifacts of the Middle Archaic Period (6,000 B.C. - 4,000 B.C.). Sites are found in the same ecological setting as the Early Archaic (Stepanaitis 1986). No association can be made between Middle Archaic sites and the use of coastal resources in spite of the fact that some sites are located in present coastal settings (Custer & Stewart 1983:4). Seasonal movements during this period were geared towards utilizing shifting food resources. A few sites from this period are located in Calvert
Late Archaic Period

In the Late Archaic period (4,000 B.C. - 1,000 B.C.) evidence for a shift toward estuarine resources is indicated by sites being located in estuarine areas with aquatic resources present at sites, most notably oysters. Sea level rise had slowed considerably during the Middle Archaic and sea level had nearly reached its present level during the Late Archaic (Steponaitis 1986:95). Broadspear projectile points of the Susquehanna and Savannah River types are diagnostic of the Late Archaic period. Steatite bowls are also found on sites of this period. The presence of storage features indicates long term occupation of sites, but permanent villages are not yet established (Gardner 1982:7).

All across southern Maryland, including Calvert County there are a greatly increased number of sites from this period (Otter 1984:23). Sites from this period are generally found near small streams on high, well drained soil (Steponaitis 1986:214) and it would be of no surprise to find sites from this period within the Patuxent Point property. The most likely areas for these sites would be at the stream heads or at the junction of the ephemeral streams and the Patuxent River or Hungerford Creek.

Woodland Period

The Woodland period is defined on the basis of ceramic
production. The Woodland, like the Archaic and Paleo-Indian, is divided into three periods. These divisions are based on changes seen in the artifact assemblage, especially the ceramics.

The Woodland period began as an outgrowth of the Archaic and ends with European colonization. Agriculture was introduced, resulting in permanent villages supported by hunting and farming subsistence. Estuarine resources are important during the Woodland period as evidenced by site locations and the presence of fish and shellfish remains at the sites. Environmental conditions were fairly stable with the most notable exception being a cold period from circa 1200 A.D. to 1600 A.D.

Early Woodland

The Early Woodland period (1,000 B.C. - 400 B.C.) appears as a continuation of the Late Archaic (Gardner 1982:3) with steatite tempered ceramics replacing steatite bowls in the artifact assemblage. Sand tempered ceramics of the Accokeek type are also diagnostic of the Early Woodland period.

Archaic lifeways appear to have continued into the Early Woodland period with little change. Sites are found in many of the same settings as the Late Archaic. Semi-sedentary living is indicated by the presence of storage features (Gardner 1982:7). Estuarine resources were used, as evidenced by sites existing in estuarine settings and oyster shells occurring in
Middle Woodland

The Middle Woodland Period is dated to approximately 400 B.C. - 800 A.D. The sites of this phase are found in the same types of settings as the Early Woodland but with a greater utilization of coastal settings (Steponaitis 1986:285). Again the use of estuarine resources is clearly indicated by the presence of oyster shell in sites. A decrease in population density is noted (Steponaitis 1986:275).

Late Woodland Period

The Late Woodland period (A.D. 800 - European contact) had a population density equal to or greater than the Late Archaic period. Site settings did not change from the Middle Woodland but there are many more of them (Steponaitis 1986:286). Agricultural villages were noted by the earliest European explorers (Smith 1982:28).

Diagnostic artifacts of the Late Woodland period include shell tempered ceramics of the Townsend/Rappahanock series. Triangular projectile points are common during this period. There is some evidence for the rise of petty chiefdoms during this period (Steponaitis 1986:33).

Recent work at the Naval Recreation Center just to the south of the Patuxent Point property has located a prehistoric site probably dating to the Late Woodland period (Israel 1986).
This site could possibly extend into the Patuxent Point property. Because of the number of sites of this period, and given the properties location it is likely that sites from the Late Woodland period exist on the Patuxent Point property. Since settlements from the Late Woodland are either large villages in prominent settings overlooking the Patuxent River or small sites scattered over higher ground in close proximity to water (Steponaitis 1986:337). It is most likely that no large villages are present on the Patuxent Point property but smaller sites should be expected.

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>TYPE OF SITE</th>
<th>SETTING</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleo-Indian</td>
<td>random find</td>
<td>undefineable</td>
<td>very low</td>
</tr>
<tr>
<td>Early Archaic</td>
<td>seasonal camps</td>
<td>near streams &amp; Cobble beds</td>
<td>low</td>
</tr>
<tr>
<td>Middle Archaic</td>
<td>seasonal camps</td>
<td>near streams &amp; cobble beds</td>
<td>low</td>
</tr>
<tr>
<td>Late Archaic</td>
<td>seasonal camps</td>
<td>well drained soil near freshwater elevated area along shore or stream heads</td>
<td>high</td>
</tr>
<tr>
<td>Early Woodland</td>
<td>seasonal camps</td>
<td>same as above</td>
<td>low</td>
</tr>
<tr>
<td>Middle Woodland</td>
<td>seasonal camps</td>
<td>same as above</td>
<td>very low</td>
</tr>
<tr>
<td>Late Woodland</td>
<td>villages hamlets</td>
<td>elevated shore well drained areas near freshwater stream heads</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>seasonal camps</td>
<td></td>
<td>high</td>
</tr>
</tbody>
</table>

TABLE 1: Site settings and probability of existence at Patuxent Point.
Historic Period

The first written description of the Patuxent River was prepared by Captain John Smith. In 1608 Smith explored and mapped the Chesapeake Bay and its major tributaries including the Patuxent River. Smith's map (Fig C-12) shows 17 Indian villages along the Patuxent River. None of them were in the vicinity of Patuxent Point. European diseases and wars with the Susquehanna Indians from the north quickly depleted the population of the Patuxent indians.

The first permanent European settlement in southern Maryland was the establishment of the town of St. Maries City in 1634. Large Jesuit manors were authorized in 1639 but may have been in existence prior to that date (Shomette 1979:7). The Jesuit manors occupied land on both sides of the lower Patuxent.

Population spread up the Patuxent as the river afforded the easiest means of transportation. The first known settler in what is now Calvert County established residence in 1642 probably along St. Leonards Creek (Shomette 1972:13). By 1650 population on the Patuxent was large enough to justify the creation of a new county. The Augustine Hermann map of 1670 shows settlement all along the Patuxent River (Fig C-13).

Tobacco cultivation was the main economic activity. The dispersed nature of the tobacco industry resulted in autonomous household plantations (Pogue & Smolek 1985). In order to
better regulate the industry certain ports were authorized to receive and ship goods. In present day Calvert County, the ports were established at St. Leonard on St. Leonards Creek, Calverton on Battle Creek, Warrenton, Huntington and Lower Marlboro (Pogue & Smolek 1985). In 1740 central warehouses and inspectors were established in order to control the product in an effort to raise prices which had declined sharply (Shomette 1979:83).

During the Revolutionary War little military activity occurred in the Patuxent river. The British sailed up the river on occasion but did little damage. In November of 1780 the British did sack and burn the house of John Parran of Point Patience, just south of Patuxent Point (Shomette 1979:94). This appears to be the closest incursion to the Patuxent Point Property.

The Patuxent river was the setting for a major naval engagement during the War of 1812. An american flotilla harassed the British navy from St. Leonards Creek before being scuttled just north of Waysons Corner (Shomette 1979). The British fleet anchored to the north of Point Patience, off-shore from the Patuxent Point property, before and after the Battle of St. Leonards Creek in 1814. It is conceivable that British forces visited the property; raiding occurred on both sides of the river. In addition to the physical damage inflicted by the British on the inhabitants of Calvert County
during the War of 1912, the removal of slaves by the British was a blow to the economy. Tobacco growing is labor intensive and the resulting shortage of manpower hurt the output (Shomette 1979:247).

Between the War of 1812 and the Civil War a period of relative stability and growth existed (Pogue 1983). As the Civil War began, the southern Maryland counties had sympathies with the Confederate States and as a result were occupied by Union forces throughout the war. The Civil War disrupted the economy mostly through the loss of slave labor (Shomette 1979:248, Pogue 1983:41). This loss of slaves forced development of a more diversified economy in the region. The seafood industry increased in importance (Pogue 1983:44).

The first commercial fishery opened at Solomons Island between 1859 and 1867 (Shomette 1979:248) and the first crab picking houses opened in Solomons Island in 1873 (Pogue & Smolek 1985). Oystering and other seafood activities were at their peak in the early twentieth century. By 1930 little had changed in the life of people in southern Calvert County. Tobacco was still the primary crop and population had not grown. In fact, it was smaller than it had been in 1790. This stagnation has been partially attributed to the isolation of the area (Pogue & Smolek 1985).

With the establishment of major military installations in the region and with the improvement of the road system,
population increased (Pogue & Smolek 1985). This development is expected to continue beyond the year 2000 (Pogue & Smolek 1985).

In spite of a historic record that dates back to the mid-seventeenth century, the Patuxent Point tract appears to have remained uninhabited until the twentieth century. The first residence on the property apparently was constructed around the beginning of the twentieth century as indicated by historic topographic map. A topographic map published in 1892 shows no buildings on the Patuxent Point property (Fig C-14). By 1906, at least one building was present on the property (Fig C-15). A 1944 topographic map shows three structures on the Patuxent Point property (Fig C-16). These three structures are shown on current topographic maps (Fig C-1) although they do not exist. None of the structures were in the Phase One area of the property.
Research Goals

This work was undertaken as a cultural resource management project. As such, the goal of this project was to identify the cultural resources within specific geographic boundaries and to determine the significance of any such cultural deposits in terms of their value in the study of history or prehistory.

Previous work in the Lower Patuxent area indicated that cultural materials were likely to be encountered because of the geographical setting of the property which is similar to other locations where archaeological sites are generally found (Steponaitus 1986, Pogue 1983, Israel 1986 and Clark & Smolek 1981). However, no sites were known to exist within the targeted area and none were listed in the Maryland State Site Files.
Field Investigations

With the purpose of the archaeological survey at Patuxent Point being to identify any cultural deposits, historic and prehistoric, which might exist, and to determine the size and significance of these deposits, and because the tract was mostly agricultural land, a surface survey with limited subsurface testing seemed the best suited approach. Within the field, strips 20 feet wide were plowed in order to provide surface visibility of artifacts (Plate D-1). The strips ran the length of the field in an approximate northwest/southeast direction (Fig C-5). The northeast most strip was placed approximately 20 feet from the field edge (about 65 feet from the property boundary). The rows were numbered in consecutive order from One to Seven with the northern most row designated Number One. An interval of approximately sixty feet of unplowed land remains between rows One and Two, Two and Three, and Three and Four. After row Four a space of 100 feet was left between rows (Fig C-5); in this way the area most likely to contain archaeological deposits was more thoroughly tested. Each of these strips was measured into 20 foot squares from which all visible cultural material was collected and bagged separately. Approximately 98,000 square feet of land, or nine percent of the total surface area of the Phase One tract, was surveyed through this work.

The wooded areas of the tract could not be plowed. Therefore, subsurface testing was necessary in these areas (Fig
Surface testing was also needed within the plowed field to determine the integrity of cultural deposits identified by the surface survey. Shovel test sampling was the major means of subsurface testing. Shovel tests were dug the width of a standard round shovel. All soil removed from the shovel tests was screened through quarter inch mesh hardware cloth. Any recovered artifacts were bagged and labeled accordingly. The depth of each test varied due to soil development; tests were dug to subsoil in all but one case where soil development was greater than 34 inches, about the maximum depth for this type of shovel test. The soil profile from each shovel test was verbally recorded with the aid of a Munsell color chart (Appendix E).

Shovel tests were excavated in the open field to study stratigraphy across the site. The first six STPs were placed along the southwest side of Row Two (Fig C-6) in order to test the stratigraphy across the elevated portion of the site. STPs Seven through Ten were excavated in the northwest portion of the site in order to test the area of shell filled pits. A buried soil horizon was noted in STP 9, 10 and 11. Aboriginal materials were recovered from these shovel tests. The results of these shovel tests prompted the digging of a Two foot by Two foot square shovel test Two feet southeast of shovel test 10 (Fig C-6). Shovel Tests Thirteen through Seventeen were dug in order to complete the stratigraphic testing of the spring area (Fig C-6).
In the wooded area to the south of the tract a regular grid of shovel test pits was dug with 50 feet intervals between tests (Fig C-6). Shovel test locations were laid out with the use of a 50 foot tape and a compass.

Four rows of shovel tests were dug with eight or nine tests per row (Fig C-6). The rows were given a letter prefix from A to D, moving from southwest to northeast. Each shovel test was then numbered consecutively from the northwest to the southeast with the letter prefix from the row. Designations for these shovel tests, therefore, appear as A1 through A8, B1 through B9, etc. These shovel tests extend beyond the boundary of the Phase One area because of an initial misunderstanding regarding the actual boundaries locations.

Except for two oyster shells and one brick fragment nothing was found in this area. The thin soils noted on the baseball field, in conjunction with the piles of dirt on the northeast side of the field, lead to the interpretation that this much of the property has been extensively modified to provide an adequate playing field.

As already indicated, a single prehistoric site was located around the ravine at the north end of the tract. The site is a multi-component aboriginal site which yielded cultural material ranging in time from circa 2,000 B.C. to A.D.1600 and covers approximately 4.5 acres. Intact features were discovered as well as buried strata.
A second site partially intrudes into the phase Dne tract. This site is a historic site dated to the early twentieth century on the basis of map research. Ceramics collected during this survey are from the southeast fringe of the site. This material includes items which could be as old as the middle of the nineteenth century. No features are known to exist at this site at this time. However, the site locus has not been investigated since it lies outside of the Phase One construction area.

The single aboriginal site identified during the survey of the Phase One tract of the Patuxent Point property is situated in the northern portion of the tract, immediately adjacent to the head of a small tributary to Hungerford Creek (Fig C-1). Water was observed flowing from the ground into this stream throughout the course of the fieldwork. Prehistoric cultural material was recovered up to 500 feet from the stream head and the site is estimated as covering 4.5 acres of the Patuxent Point tract (Fig C-8). The site probably extends into the adjacent property to the north. Less than five percent of the site is covered in corn stubble, with the fringes being grown over in raspberries and other weeds.

Materials recovered from the site include projectile points from the Late Archaic/Early Woodland period (Plate D-6, D-7), projectile points from the Middle Woodland period
(Plate D-9) and ceramics from the Late Woodland Period (Plate D-9). The heaviest concentration of material is located on the north corner of the property. It is in this area that shell features were exposed by plowing (Fig C-7) (Plate D-2, D-3, D-4). The Late Woodland material appears to be isolated to this corner of the property. Middle Woodland artifacts were also concentrated towards this corner (Fig C-7). Late Archaic/Early Woodland projectile points were the most widespread diagnostic artifacts. They were found over the greater part of the site (Fig C-7). Insufficient data is available to document horizontal separation of the various components of this site.

During the collection of artifacts from Row One little was found for the first 450 feet. From 460 feet to 720 feet brick fragments were common. A few pieces of historic ceramics were also found in this area. Historic artifacts were again present between 840 feet and 980 feet (Fig C-9).

Prehistoric artifacts in Row One were first encountered approximately 700 feet from the beginning of the row. A single projectile point of the Piscataway type was found in the 700-720 foot unit (Plate D-6 #3). A small shell feature was noted in the 940-960 foot unit.

In Row Two historic artifacts were encountered in two areas. The first area where historic materials were found was from 180 feet to 280 feet from the southeast end of the row.
The second area was from 580 feet to 700 feet. Most of this material was brick fragments but some late nineteenth century and twentieth century ceramics and glass were also present.

Prehistoric materials were encountered in Row 2 between 120 feet and 180 feet, 300 feet and 360 feet, and 500 feet and 960 feet from the southeast end of the row. Most of the prehistoric material was fire cracked rocks and flakes. A stemmed quartz projectile point (Plate D-7) was found in the 660 - 680 foot unit and a Piscataway type point was recovered in the 700 - 720 foot unit (Plate D-6 #1). A rhyolite projectile point (Plate D-8 #1) was found in the unplowed ground between Row One and Row Two at approximately the 700 foot distance (Fig C-7). A small shell feature was noted in the 820 - 840 foot unit. In the 940 - 960 foot unit two features were exposed (Plate D-2,D-3,D-4). About 400 grams of soil from these two features from Row Two was screened through window screen (14 squares to the inch). This soil was collected from inside of oyster shells that had been turned up by the plowing. Artifacts recovered include fish bones, deer bones, flakes and ceramics of the Late Woodland Period (Plate D-5).

Beginning at the southeast end of Row Three, and continuing for about 200 feet, was a scatter of historic materials including brick fragments and glass and ceramics from the late nineteenth and twentieth centuries. More historic material of
the same vintage was found between 540 feet and 660 feet.

Prehistoric material was found in Row Three almost continuously from 280 to 780 feet. A Piscataway type projectile point was found in the 500 - 520 foot unit (Plate D-6 #2). A second projectile point of this type was found in the 720 - 740 foot unit (Plate D-6 #4). Also found in the 720 - 740 foot unit was a lanceolate rhyolite point of the Selby Bay type (Fig C-7)(Plate D-B #3). Most of the prehistoric material was fire cracked rock and lithic debitage. Oyster shells of unknown cultural affiliation were common.

Row Four produced historic artifacts in the first 60 feet from the southeast end consisting of glass and brick. From 120 feet to 300 feet, thermally altered ceramics, glass and brick fragments were found. Brick fragments continued for another 100 feet. Beginning at 500 feet and continuing to the end of the Row at 800 feet historic materials were again recovered. This material included brick and oyster shell as well as sherds of ceramics and glass (Fig C-9). A single pig femur epiphysis was found as well. This material is part of a site which is primarily located to the northwest of the Phase One area. Topographic maps from the early twentieth century show three houses on the Patuxent Point property in the same locations as those shown on current topographic maps (Fig C-15,C-16). This site is one of these houses.
Prehistoric artifacts were recovered in Row Four from 240 feet to 776 feet. As in other rows this material was mostly lithic debitage. A Piscataway type projectile point was found in the 500 - 520 foot unit (Plate D-6 #5). A stemmed rhyolite Selby Bay point was recovered from the 720 - 740 foot unit (Plate D-9 #2).

For the first 440 feet of Row Five oyster shells, one piece of brick and one piece of unglazed red bodied earthenware were all that was recovered. From 540 feet to the end of the Row at 800 feet historic materials of the nineteenth and twentieth century, including pearlware, whiteware, semi-vitreous ceramics, metal, and brick, were recovered. This material is associated with the site just to the northeast of the Phase One area mentioned in Row Four.

Prehistoric material was present in Row Five also. Lithic debitage was scattered over the units from 440 feet to the end of the Row at 800 feet. A single Piscataway type projectile point was found in the 740 - 760 foot unit.

In the first 120 feet of the southeast end of Row Six, brick and twentieth century glass and aluminum was found. Brick and oyster shells were found the entire length of the row, but not continuously. There was no aboriginal material recovered in this row.
Row Seven contained no concentrations of artifacts. Oyster shell and brick fragments were discontinuously scattered along the row. Other than oyster shell and brick a single fragment of green bottle glass and a single piece of whiteware ceramics were recovered. There were no aboriginal materials found in this row.

The surface collection of artifacts has indicated the approximate site boundaries as defined by the distribution of artifacts (Fig C-17). At least eleven projectile point fragments have been recovered as well as other bifacial fragments and debitage. A total of five prehistoric subsurface features also have been discovered. Faunal material is present in at least two of these as indicated by the screening of samples through fine mesh screen. This site has been designated 18CU272 by the Maryland Geological Survey.

The Maryland Geological Survey has designated the historic site as 18CU271. Only the southern boundary of this site is known at this time (Fig C-8). The majority of the site lies outside of the geographical limits of this survey. Historic material was present throughout the field (Fig C-9), but much of this apparently is not associated with the 18CU271. Based on historic maps, this site dates from the early twentieth century and possibly the late nineteenth century. Oyster
shells were scattered throughout the field but higher concentrations were noted at the identified sites (Fig C-10).

After determining the boundaries of the aboriginal site through the controlled surface collection shovel tests were excavated across the site in order to document site stratigraphy. Shovel tests 1 - 8, 12 -13, 15 and 16 show that the majority of the site exists only in the plow zone (Fig E-1 - E-8, E-12, E-13, E-15, E-16). In shovel tests 9, 10, 11, 14 and 17 soil profiles indicate that soil has been deposited around the stream head, probably soil eroded from the plowed field.

In shovel tests 9, 10 and 11 these built up soils appear to be covering an old land surface containing aboriginal materials from the Late Woodland period. This find prompted the execution of a two foot by two foot test unit in this area.

Shovel test 9 was placed in the wooded portion of the field edge two feet southeast of survey stake BE-7. Recovered from this test were a brick fragment, a small chert flake, a piece of quartz shatter and one sand tempered aboriginal pot sherd of unknown type. The ceramic fragment was recovered from a depth of approximately 24 inches; the plow zone was measured as being 13 inches deep (Fig E-9). Either the deeply buried material at this depth was covered by soil eroded from the higher part of the field or the material itself was eroded from the higher part of the field.
In shovel test 10 a dark lens of soil was clearly visible from 14 inches below ground surface to 17 and one half inches below ground surface (Fig E-10). A few cultural items were recovered from the upper 14 inches of the test but this is interpreted as plow zone. Most of the artifacts recovered in this test are believed to have come from the second level - the buried horizon. A cobble core, one quartz chunk and one aboriginal shell tempered potsherd attributed to the Late Woodland period were recovered.

Shovel test 11 had the same basic profile as shovel test 10, except that the second level was thicker (Fig E-11). The upper 13 inches are interpreted as plow zone. From 13 to 24 inches in depth a soil horizon was revealed which appeared in texture and color to be a mix of plow zone and subsoil. Recovered from this level were a single chert flake, three fire cracked rocks, three oyster shell fragments and two very small aboriginal potsherds - one shell tempered, the other tempered with crushed quartz. These sherds are probably from the Late Woodland period.

Reference to figure C-6 will show that these three shovel tests which contain possible buried horizons are along the fringe of the field. It is conceivable that these areas have not been plowed because of their proximity to the ravine but it is also possible that past conditions were favorable for the
plowing of this ground.

In shovel tests 14 and 17, more evidence of soil movement was encountered. The profile from shovel test 14 shows three layers of soil overlying the subsoil. These appear to be successively plowed soils which have been deposited from the higher elevations of the field. Shovel test 17 was noted as having a similar profile, but subsoil was never reached. The test was dug to 34 inches below ground surface. Historic materials were recovered from the lowest definable level (7 - 34 inches). This information confirms the interpretations of shovel test 14.

The most promising area for finding intact cultural deposits, as revealed by the shovel tests, was in the area of tests 10, 11 and 12. In order to further investigate that area a two by two foot excavation was dug two feet to the southeast of shovel test 10 (Fig C-8). The two by two foot test unit revealed the same stratigraphic sequence as seen in shovel tests 9 and 10 (Fig E-18). The buried level consisted of a dark yellowish brown clayey sand with cultural materials which appear to be from the Late Woodland period (see artifact inventory Appendix F). The overlying levels of this test unit also contained cultural material, but it was in small amounts and these deposits are interpreted as colluvium or slope wash resulting from plowing.
The two foot by two foot test unit did not reveal plow scars below the culture bearing layer. Since this was a relatively small unit the possibility of plow disturbance of this layer can not be totally ruled out, however.

The fact that a site was found within the Phase One tract was no surprise. Sites from the Late Archaic through the Late Woodland are found along stream heads more frequently than any other setting (Stephens 1986:200, 214). The soils on which sites are situated often are good agricultural soils and generally have been cultivated for most of the historic period. This usually results in sites being disturbed; leaving few intact subsurface remains. Occasionally, sites are found relatively intact or, most frequently, with subsurface features being preserved. The latter is the case at Patuxent Point.

Intact subsurface features, because they have remained undisturbed since being filled provide some of the best material for studying cultural processes of past peoples. When chemical and physical conditions remain stable a wide variety of cultural information is recoverable. The features exposed at the Patuxent Point property have shown that organic materials are preserved and recoverable. From such remains dietary information, butchering practices, season of site occupation, past environmental conditions and radio-carbon dates can be obtained. Such information is scant in Southern
Maryland. Lithic and ceramic materials are also present in the features. The site is deemed potentially eligible for nomination to the National Register of Historic Places because of the archaeological potential contained in the intact subsurface features discovered at the site.

Future development at the Patuxent Point property includes plans to construct at least five units of townhouses on the site (Fig C-11). The construction of these buildings and attendant roadways will adversely affect the site. Excavation for foundations, road beddings and utilities will in all likelihood destroy the last intact vestiges of the site. The only exception to this would be the fringe areas as the trees around the spring head are to be preserved.
Recommendation

Because of the research potential of the site, further work is recommended if it is not possible to preserve the site. There should be two aspects to this work (see Appendix B for proposed budget and schedule). The entire site should be plowed and subjected to controlled surface collection to obtain a more representative sample of artifactual materials, and to better define the size of the various components of the site. All features located during the plowing should be carefully excavated using techniques that will provide for meaningful analysis of feature contents. The site should be mapped, locating features and ground contours. Other work which might be considered but is not recommended due to the cost and time constraints is further investigation of the subsurface deposits in the fringe areas and plow zone stripping to locate additional features including post molds.
Conclusion

Through the use of surface and subsurface survey techniques a survey of the Patuxent Point Phase One construction area was completed. This survey has documented the existence of one multicomponent aboriginal site (18CU272) and the southeastern boundary of an early twentieth century site (18CU271) (Fig C-17). Little can be said about the historic site at this time: the locus is located outside of the geographical bounds of this survey.

The prehistoric site covers approximately 4.5 acres and is known to contain intact Late Woodland shell features containing both organic and non-organic cultural remains. This site is believed eligible for nomination to the National Register of Historic Places on the basis of these features. Since this site will be deleteriously affected by the scheduled construction it is recommended that additional work be conducted at the site. Intensive controlled surface collection of materials from across the site as well as the excavation of all features should constitute the minimum amount of work.
BIBLIOGRAPHY

Belknap, D.F & J.C. Kraft

Brown, Ann R.
1982 Historic Ceramic Typology with Principal Dates of Manufacture and Descriptive Characteristics for Identification
Delaware Department of Transportation Document

Carbone, Victor A.
1976 Environment and Prehistory in the Shenandoah Valley
Ph.d dissertation. Catholic University of America

Custer, Jay F.
1980 Human Response to Holocene Climatic Episodes in the Northern Middle Atlantic.

Custer, Jay F. & Michael R. Stewart
1983 Maritime Adaptations in the Middle Atlantic Region of Eastern North America
Gardner, William M.

1974  *The Flint Run Paleo-Indian Complex: A Preliminary Report*
Occasional Publication #1 Catholic University Archaeology Laboratory, Dept of Anthropology

Gardner, William M.

1980  *Settlement -Subsistence Strategies in the Middle and South Atlantic Portions of the Eastern United States during the Late Pleistocene and Early Holocene*
Washington, D.C. 1980

Gardner, William M.

1982  *Early and Middle Woodland in the Middle Atlantic: An Overview*
Paper presented to Middle Atlantic Archaeological Conference. Rehoboth Beach, De. 1982

Israel, Stephen

1986  *Archaeological Reconnaissance of the Naval Recreation Center Shoreline on the Patuxent River at Solomons, Calvert County, Md. and Navy Recreation Center Prehistoric Site No. 1.*
Prepared for Chesapeake Division Naval Facilities Engineering Command, Washington, D.C.
Matthews, Earle D.
1971 Soil Survey of Calvert County, Maryland
United States Department of Agriculture
Soil Conservation Service

Otter, Edward
1984 The Prehistory of Southern Maryland
File manuscript

Pogue, Dennis J.
1983 Patuxent River Naval Air Station Cultural Resources Survey. Vol 1: History and Archaeology
Public Works Dept. Naval Air Station
Patuxent River, Md.

Pogue, Dennis J. & Michael A. Smolek
1985 An Archaeological Resource Management Plan for the Southern Maryland Region
Maryland Historic Trust Manuscript #32

Shomette, Donald
1979 The Patuxent River Submerged Cultural Resources Survey
PH.d dissertation University of Pennsylvania
Smolek, Michael A. & Emily Kutler
1980  A Survey of the History and Prehistory of
St. Leonard Shores, Calvert Co., Md.
Maryland Historic Trust Manuscript Series #10

Steponaitus, Laurie Cameron
1986  Prehistoric Settlement Patterns in the Lower
Patuxent Drainage, Md.
Ph.d Dissertation University of New York, Binghamton
Herman, Augustine
1670. A map of Virginia and Maryland

Smith, Captain John
1608. Map of Virginia

United States Geological Survey
photorevised 1974. Solomons Island quadrangle

United States Geological Survey
1892. Drum Point. 1:62500
   Reprinted 1896

United States Geological Survey
1905 Drum Point 1:62500

United States Coast and Geodetic Survey
1913. Summary of survey of Oyster Bars of Maryland

United States Geological Survey
1944 Solomons Island, Maryland
   7.5 minute series
Appendix A.

Qualifications of Investigator
APPENDIX A

QUALIFICATIONS OF INVESTIGATOR

The investigator on this project has seven years experience in archaeology in the Middle Atlantic region of the United States. This experience involves survey and excavation of historic and prehistoric sites. The investigator holds a BA in anthropology from the University of Delaware and is also a candidate for a Masters Degree in anthropology at Catholic University of America, Washington D.C.
Appendix B

Proposed Future Work

Budget and Time
APPENDIX B
PROPOSED ADDITIONAL WORK

Needed Work:
- Plow and collect artifacts from site as indicated by original survey.
- Excavate and process subsurface features (excavate, flotation, processing materials, analyze materials, prepare report)

Field collection 6 man days
Feature excavation 20 - 30 man days
Feature fill processing 20 - 25 man days
Analyze results 25 man days
Report preparation (includes)
  special analysis (faunal) 5 - 10 man days
  preparation 20 man days
  technical support (graphics) c-14 dates (maximum 2)

Costs
Man days of work (110 high estimate) $8800.00
(based on rate of 8hr/day $10/hr.)
Technical costs 600.00
(c-14 maximum $400.)
(report technical costs $200.)

Total: $9200.00
Appendix C.

Figures C-1 through C-8

Maps
Figure C-1

U.S.G.S. 7.5' Topographic Map (section)
Solomons Island Maryland

Showing location of the Patuxent Point Property
Figure C-2

Project location within
Maryland Archaeological Research Units
Numbers Designate
Maryland Archeological
Research Units
(Council for Maryland Archeology)

COASTAL PLAIN PROVINCE
Unit 1 - Atlantic Drainage
Unit 2 - Potomac Drainage
Unit 3 - Antietam Creek-Conococheague Creek Drainages
Unit 4 - Choptank Drainage
Unit 5 - Chester Drainage
Unit 6 - Sassafras-Es-Northeast-Bush-
Susquehanna Drainages
Unit 7 - Gunpowder-Middle-Bank-Patapsco-
Magray-Savoy-South-Rhode-West
Drainages
Unit 8 - Riverine Patuxent Drainage
Unit 9 - Estuarine Potomac Drainage
Unit 10 - Estuarine Patuxent Drainage
Unit 11 - Riverine Patuxent Drainage

APPALACHIAN PROVINCE
Unit 18 - Catoctin Creek Drainage
Unit 19 - Antietam Creek-Conococheague Creek Drainages
Unit 20 - Licking Creek-Tonoloway Creek-Fifteenmile Creek Drainages
Unit 21 - Town Creek Drainage
Unit 22 - Nicholas Creek-Georges Creek Drainages
Unit 23 - Potomac-Savage Drainages
Unit 24 - Toughloughney-Casselman Drainages

PIEDMONT PROVINCE
Unit 12 - Potomac Drainage
Unit 13 - Patuxent Drainage
Unit 14 - Patapsco-Middle Drainages
Unit 15 - Gunpowder-Bush Drainages
Unit 16 - Susquehanna-Elk-Northeast
Drainages
Unit 17 - Monocacy Drainage
Figure C-3

U.S.G.S. 7.5' Topographic Map (section)
Solomons Island, Maryland
Showing location of the Patuxent Point Property
with the Phase 1
Construction area identified
Figure C-4

Patuxent Point

Phase 1 Construction Area
Figure C-5

Patuxent Point
Phase 1 Construction Area
Showing locations of plowed strips
Figure C-6

Patuxent Point
Phase 1 Construction Area
Showing locations of Shovel tests
and the 2' x 2' test unit
Figure C-7

Patuxent Point
Phase 1 Construction Area
Showing locations of Features,
Middle Woodland Projectile Points,
Late Archaic/Early Woodland Projectile Points,
and Site Boundries
- - - site boundary
M - Middle Woodland point
A - Late Archaic/Early Woodland point
F - feature
S - stemmed point

100
Figure C-8

Patuxent Point
Phase 1 Construction Area
Showing Distribution of
Aboriginal Lithics
In The Collected Transects
site boundary

1-2
3-4
5-10

100
Figure C-9

Patuxent Point
Phase 1 Construction Area
Showing Distribution of
Historic Artifacts
Figure C-10

Patuxent Point

Phase 1 Construction Area

Showing Distribution of

Oyster Shells
Figure C-11

Patuxent Point
Phase 1 Construction Area
Showing Proposed Construction
Information provided by
Advanced Surveys, Inc.
Lotian, Maryland
Figure C-12

Map of Chesapeake (portion) showing Patuxent River Area
By Captain John Smith
1608
Figure C-13
Map of Chesapeake (portion) showing Patuxent River Area
By Augustine Hermann 1673
Figure C-14

U.S.G.S. Topographic Map (section)
scale: 1:62500
edition of 1892. reprinted 1896
Drum Point Quad, Maryland

Showing location of the Patuxent Point Property
Figure C-15

U.S.G.S. Topographic Map (section)

scale: 1:62500

dition of 1904

Drum Point Quad, Maryland

Showing location of the Patuxent Point Property

and historic structure
Figure C-16

U.S.G.S. 7.5' Topographic Map (section)

edition of 1944

Solomons Island Maryland

Showing location of the Patuxent Point Property

and historic structures
Figure C-17
Patuxent Point
Phase 1 Construction Area
Showing site boundaries
Appendix D

Plates
Plate D-1

View of Row 4

looking Northwest
Plate D-2

Row 2 Unit 940-960

looking Northeast

west feature visible

in center of photo
Plate D-3

Row 2 Unit 940-960

East Feature
Plate D-4

Row 2 Unit 940-960
West Feature
Trowel pointing to
aboriginal Pot Sherd
Plate D-5

Sample of Materials
Recovered from West Feature.
Upper left: potsherd (see plate D-4)
Lower left: quartz flake
Upper right: deer phalange fragment
Lower right: small bones of mammals and fish
Plate D-6

Late Archaic/Early Woodland

Projectile Points

#1 (Upper Left): Row 2, 700 - 720 feet
#2 (Upper Right): Row 3, 500 - 520 feet
#3 (Lower Left): Row 1, 700 - 720 feet
#4 (Lower Center): Row 3, 720 - 740 feet
#5 (Lower Right): Row 4, 500 - 520 feet
Plate D-7

Early Woodland

Stemmed Quartz Point
Plate D-8

Middle Woodland

Rhyolite Projectile Points

#1 (Upper Left): Between Row 1 and Row 2
#2 (Upper Right): Row 4, 720 - 740 feet
#3 (Lower): Row 3, 720 - 740 feet
Plate D-9

Late Woodland Potsherds
Appendix E

Soil Profiles

Shovel Tests

and

2' x 2' excavation
Profile
Shovel Test #1
Figure E-1

Level 1: 0-13 inches
10YR5/4 yellowish brown sandy silt
low plasticity plow zone

Level 2: 13-17 inches
10YR5/6 yellowish brown clayey silt
loam

Level 3: 17-22 inches
10YR5/8 yellowish brown clay loam
medium to high plasticity subsoil
Profile
Shovel Test #2
Figure E-2

Level 1: 0-8 inches
10YR5/4 yellowish brown
sandy silt loam
low plasticity
plow zone

Level 2: 8-13 1/2 inches
10YR5/6 yellowish brown
silty clay loam
probable plow zone

Level 3: 13 1/2-16 inches
10YR5/8 yellowish brown
clay loam
high plasticity
subsoil
Level 1: 0-10 inches
10YR5/4 yellowish brown
sandy silt loam
plow zone

Level 2: 10-13 inches
10YR5/6 yellowish brown
sandy silt clay
plow zone

Level 3: 13-19 inches
10YR5/8 yellowish brown
clay loam
subsoil

Profile
Shovel Test #3
Figure E-3
Level 1: 0-9 inches
10YR5/4 yellowish brown
sandy clayey silt
plow zone

Level 2: 9-16 inches
10YR5/8 yellowish brown
clay loam
subsoil
Level 1: 0-8 inches  
yellowish brown  
10YR5/4 silty sand loam  
plow zone

Level 2: 8-12 inches  
7.5YR5/4  
yellowish brown  
sandy loam  
plow zone

Level 3: 12-19 inches  
10YR5/6 yellowish brown  
sand with little clay  
pebbles present  
subsoil
Level 1: 0-11 inches
10YR5/4 yellowish brown
sandy silt clay
plow zone

Level 2: 11-14 inches
10YR5/8 yellowish brown
clayey sand with pebbles
subsoil

Profile
Shovel Test #6
Figure E-6
Level 1: 0-8 inches
10YR5/4 yellowish brown
sandy silt loam
plow zone

Level 2: 8-10 1/2 inches
10YR5/6 yellowish brown
silty clay
plow zone

Level 3: 10 1/2-12 1/2 inches
10YR5/8 yellowish brown
silty clay
subsoil

Profile
Shovel Test #7
Figure E-7
Level 1: 0-8 inches
10YRS/4 yellowish brown
sandy silt loam
plow zone

Level 2: 8-11 inches
10YRS/6 yellowish brown
silty clay loam
plow zone

Level 3: 11-13 inches
10YRS/8 yellowish brown
silty clay
subsoil

Profile
Shovel Test #8
Figure E-8
Level 1: 0-13 inches
10YRS/4 yellowish brown
clay silt
plow zone

Level 2: 13-24 inches
10YRS/4 yellowish brown
clayey silt
less plastic than
level 1
possible buried A horizon

Level 3: 24-26 inches
10YRS/4 light yellowish
brown sand
subsoil

Profile
Shovel Test #9
Figure E-9
Level 1: 0-14 inches
10YR5/4 yellowish brown
clayey sandy silt
plow zone

Level 2: 14-17 1/2 inches
10YR4/3 brown sandy silt loam
probable buried A horizon

Level 3: 17 1/2-20 inches
10YR5/4 yellowish brown
gravelly sand
subsoil

Profile
Shovel Test #10
Figure E-10
Level 1: 0-13 inches
10YRS/4 yellowish brown clayey sand with pebbles
Plow Zone

Level 2: 13-24 inches
10YRS/6 yellowish brown clayey sand
Probable plow zone

Level 3: 24-27 inches
10YRS/6 yellowish brown pebbly sand
subsoil

Profile
Shovel Test #11
Figure E-11
Level 1: 0-14 inches
10YR5/4 yellowish brown
silty clayey sand
plow zone

Level 2: 14-29 inches
10YR5/6 yellowish brown
clayey sand with pebbles
low plasticity

Level 3: 29-30 inches
10YR5/4 to 10YR6/4
yellowish brown to
light yellowish brown
clayey sand
subsoil

Profile
Shovel Test #12
Figure E-12
Level 1: 0-8 inches
10YR5/4 yellowish brown
sandy silty clay
plow zone

Level 2: 8-12 inches
10YR5/8 yellowish brown
clay
subsoil

Profile
Shovel Test #13
Figure E-13
Level 1: 0-8 1/2 inches
10YR5/4 yellowish brown
silty sand
plow zone

Level 2: 8 1/2-17 inches
10YR5/4 yellowish brown
silty sand
more compact than L.1

Level 3: 17-24 inches
10YR5/6 yellowish brown
clayey silt sand

Level 4: 24-28 inches
10YR6/3 pale brown sand
subsoil

Profile
Shovel Test #14
Figure E-14
Level 1: 0-8 inches
10YR5/4 yellowish brown
silty clay
plow zone

Level 2: 8-12 inches
10YR5/8 yellowish brown
clay
subsoil

Profile
Shovel Test #15
Figure E-15
Level 1: 0-12 1/2 inches
10YR5/4 yellowish brown
silty clay
plow zone

Level 2: 12 1/2-18 inches
10YR5/8 yellowish brown
clay
subsoil
Level 1: 0-7 inches
10YR4/3 brown
silty clay
plow zone

Level 2: 7-34 inches
10YR5/4 yellowish brown
clayey sandy silty sand
colluvium
historic artifacts in
this level
subsoil not reached

Profile
Shovel Test #17
Figure E-17
Figure E-18

Profile

2' x 2'

test square
Level 1: 10YR4/4 brown silty clay loam. Humus
Level 2: 10YR5/4 yellowish brown clayey silt. cobbles present. colluvium
Level 3: 10YR4/4 dark yellowish brown clayey sand cobbles present. cultural materials present buried horizon
Level 4: 10YR5/8 yellowish brown sand and cobbles. Subsoil

2' x 2' Test Unit
northwest profile

Figure E-18
Profiles (verbal)
South Side Shovel Tests
See Figure C-6

Shovel Test A-1

Level 1: 0-10 inches
10YR5/4 yellowish brown silty clay plow zone

Level 2: 10-24 inches
10YR5/6 yellowish brown clay. Very plastic. Subsoil

Shovel Test A-2

Not dug. at baseball dugout

Shovel Test A-3

Level 1: 0-4 1/2 inches
10YR3/3 dark brown sandy clayey silt humus

Level 2: 4 1/2-5 1/4 inches
10YR5/8 yellowish brown clayey sand. no plasticity. Fill?

Level 3: 5 1/4-11 inches
10YR5/4 yellowish brown clayey silt. no plasticity

Level 4: 11-20 inches
10YR5/4 light yellowish brown clayey sand subsoil

Shovel Test A-4

Level 1: 0-2 3/4 inches
10YR5/3 brown clayey silt. low plasticity. humus

Level 2: 2 3/4-11 1/4 inches
10YR5/4 yellowish brown silt clay. plow zone

Level 3: 11 1/4-15 inches
10YR5/4 light yellowish brown silty clay subsoil
Shovel Test A-5
Level 1: 0-9 inches
10YRS/3 brown silt loam plow zone
Level 2: 9-12 inches
10YRS/4 yellowish brown clayey silt loam plow zone
Level 3: 12-14 inches
10YR6/4 light yellowish brown silty clay subsoil

Shovel Test A-6
Level 1: 0-10 inches
10YRS/3 brown silty clay loam plow zone
Level 2: 10-20 1/2 inches
10YR6/5 yellowish brown silty clay subsoil.

Shovel Test A-7
Level 1: 0-2 inches
10YR3/3 dark brown silt clay humus, loosely compacted
Level 2: 2-11 inches
10YRS/6 yellowish brown silty clay plow zone
Level 3: 11-13 inches
10YRS/8 yellowish brown clay subsoil
Shovel Test A-B

Level 1: 0-3 inches
10YR4/3 brown silty clay humus
Level 2: 3-12 1/2 inches
10YR5/6 yellowish brown silt clay plow zone
Level 3: 12 1/2-15 inches
10YR5/8 yellowish brown clay subsoil

Shovel Test B-1

Level 1: 0-1 inches
10Yr4/3 brown silt humus
Level 2: 1-10 inches
10YR5/4 yellowish brown silt clay plow zone
Level 3: 10-13 inches
10YR5/6 yellowish brown clay subsoil

Shovel Test B-2

Level 1: 0-2 inches
10YR5/3 brown silt clay humus
Level 2: 2-11 inches
10YR5/6 yellowish brown clay silt plow zone
Level 3: 11-14 inches
10Yr6/6 brownish yellow silty clay subsoil

Shovel Test B-3

Level 1: 0-2 inches
10Yr5/3 brown silt clay humus
Level 2: 2-8 inches
10YR5/6 yellowish brown clay silt plow zone
Level 3: 8-11 1/2 inches
10YR6/6 brownish yellow silt clay subsoil

Shovel Test B-4
Level 1: 0-9 1/2 inches
10YR5/4 yellowish brown silt clay plow zone
Level 2: 10YR6/6 brownish yellow silt clay subsoil

Shovel Test B-5
Level 1: 0-2 inches
10YR3/3 brown silt clay humus
Level 2: 2-11 inches
10YR5/6 yellowish brown clay silt plow zone
Level 3: 11-13 inches
10YR6/4 light yellowish brown clay silt subsoil

Shovel Test B-6
Level 1: 0-4 1/2 inches
10YR5/4 yellowish brown clay silt plow zone
Level 2: 4 1/2-8 inches
10YR6/4 light yellowish brown clay silt subsoil

Shovel Test B-7
Level 1: 0-2 inches
10YR3/3 dark brown silty clay humus
Level 2: 2-12 inches
10YR5/4 yellowish brown clayey silt plow zone
Level 3: 12-16 inches
10YR6/4 light yellowish brown sily clay subsoil

Shovel Test B-8
Level 1: 0-2 inches
10YR3/3 dark brown sily clay humus
Level 2: 2-12 inches
10Yr5/4 yellowish brown silt clay plow zone
Level 3: 12-18 inches
10YR5/8 yellowish brown silt clay subsoil

Shovel Test B-9
Level 1: 0-1 1/2 inches
10YR3/3 dark brown sily clay humus
Level 2: 1 1/2-13 inches
10YR5/6 yellowish brown silt clay plow zone
Level 3: 10Yr5/8 yellowish brown silt clay subsoil

Shovel Test C-1
Level 1: 0-1 1/2 inches
10YR4/3 brown clayey silt loam humus
Level 2: 1 1/2-10 inches
10YR5/4 yellowish brown silt clay plow zone
Level 3: 10-12 inches
10YRS/8 yellowish brown sily clay subsoil
Shovel Test C-2

Level 1: 0-7 inches
10YR5/4 yellowish brown clayey silt plow zone

Level 2: 7-16 inches
10YR5/6 yellowish brown silt clay

Level 3: 16-17 inches
10YR5/8 yellowish brown silt clay subsoil

Shovel Test C-3

Level 1: 0-9 inches
10YR5/4 yellowish brown clayey silt plow zone

Level 2: 9-12 inches
10YR6/4 light yellowish brown silty clay subsoil

Shovel Test C-4

Level 1: 0-6 inches
10YR5/4 yellowish brown clayey silt plow zone

Level 2: 6-10 inches
10YR6/4 light yellowish brown silty clay subsoil

Shovel Test C-5

Level 1: 0-9 1/2 inches
10YR5/4 yellowish brown clayey silt plow zone

Level 2: 9 1/2-12 inches
10YR6/4 light yellowish brown silty clay subsoil
Shovel Test C-6

Level 1: 0-3 inches
10YR4/3 brown silt clay humus

Level 2: 3-12 inches
10YR5/4 yellowish brown silt clay plow zone

Level 3: 12-14 inches
10YR6/4 light yellowish brown clayey silt subsoil

Shovel Test C-7

Level 1: 0-1 1/2 inches
10YR4/3 brown silt clay humus

Level 2: 1 1/2-11 1/2 inches
10YR5/4 yellowish brown silt clay plow zone

Level 3: 11 1/2-13 inches
10YR6/4 light yellowish brown clayey silt subsoil

Shovel Test C-8

Level 1: 0-9 inches
10YR5/4 yellowish brown silt clay plow zone

Level 2: 9-13 inches
10YR6/4 light yellowish brown clayey silt subsoil
Shovel Test C-9

Level 1: 0-1 inch
  10YR4/3 brown silt clay humus

Level 2: 1-9 inches
  10YR5/4 yellowish brown silt clay plow zone

Level 3: 9-11 inches
  10YR6/4 light yellowish brown clayey silt subsoil

Shovel Test D-1

Level 1: 0-1 1/2 inches
  10YR4/3 brown silt clay humus

Level 2: 1 1/2-10 inches
  10YR5/4 yellowish brown silt clay plow zone

Level 3: 10-12 inches
  10YR5/8 yellowish brown silty clay subsoil

Shovel Test D-2

Level 1: 0-2 inches
  10YR4/3 brown silt clay humus

Level 2: 2-10 1/2 inches
  10YR5/4 yellowish brown silt clay plow zone

Level 3: 10 1/2-12 1/2 inches
  10YR5/8 yellowish brown silty clay subsoil

Shovel Test D-3

Level 1: 0-4 1/2 inches
  10YR4/3 brown silt clay humus

Level 2: 4 1/2-10 1/2 inches
10YR5/4 yellowish brown silt clay plow zone
Level 3: 10 1/2-12 inches
10YR5/8 yellowish brown silty clay subsoil

Shovel Test D-4
Level 1: 0-5 inches
10YR4/3 brown silt clay humus
Level 2: 5-10 inches
10YR5/4 yellowish brown silt clay plow zone
Level 3: 10-14 inches
10YR6/4 light yellowish brown silty clay subsoil

Shovel Test D-5
Level 1: 0-2 inches
10YR4/3 brown silt clay humus
Level 2: 2-11 inches
10YR5/4 yellowish brown silt clay plow zone
Level 3: 11-12 inches
10YR6/4 light yellowish brown silty clay subsoil

Shovel Test D-6
Level 1: 0-4 inches
10YR4/3 brown silt clay humus
Level 2: 4-11 inches
10YR5/4 yellowish brown silt clay plow zone
Level 3: 11-13 1/2 inches
10YR6/4 light yellowish brown silty clay subsoil
Shovel Test D-7

Level 1: 0-3 1/2 inches
10YR4/3 brown silt clay humus

Level 2: 3 1/2-8 inches
10YR5/4 yellowish brown silt clay plow zone
loose and crumbly

Level 3: 8-13 1/2 inches
10YR5/4 yellowish brown silt clay plow zone
compact, crumbly with iron stains

Level 4: 13 1/2-16 inches
10YR6/4 light yellowish brown silty clay subsoil

Shovel Test D-8

Level 1: 0-4 1/2 inches
10YR4/3 brown silt clay humus

Level 2: 4 1/2-11 inches
10YR5/4 yellowish brown silt clay plow zone

Level 3: 11-13 1/2 inches
10YR6/4 light yellowish brown silty clay subsoil

Shovel Test D-9

Level 1: 0-4 inches
10YR4/3 brown silt clay humus

Level 2: 4-10 inches
10YR5/4 yellowish brown silt clay plow zone

Level 3: 10-14 1/2 inches
10YR6/4 light yellowish brown silty clay subsoil
Shovel Test D-10

Level 1: 0-2 1/4 inches
10YR4/3 brown silt clay humus

Level 2: 2 1/4-11 1/2 inches
10YR5/4 yellowish brown silt clay plow zone

Level 3: 11 1/2-13 inches
2.5YR6/4 light yellowish brown silt clay subsoil
Appendix F

Artifact Catalog

By Provenience Unit
Row One

0 - 20 feet
  no artifacts

20 - 40 feet
  1 coal fragment

40 - 60 feet
  2 oyster shell fragments

60 - 80 feet
  2 oyster shell fragments

80 - 100 feet
  no artifacts

100 - 120 feet
  no artifacts

120 - 140 feet
  1 oyster shell fragment

140 - 160 feet
  1 piece transfer printed whiteware

160 - 180 feet
  no artifacts

180 - 200 feet
  no artifacts

200 - 220 feet
  3 oyster shell fragments

220 - 240 feet
  1 brick fragment: weight 8 grams

240 - 260 feet
  no artifacts

260 - 280 feet
  1 brick fragment: weight 4.9 grams
<table>
<thead>
<tr>
<th>Depth Range</th>
<th>Artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>280 - 300 feet</td>
<td>no artifacts</td>
</tr>
<tr>
<td>300 - 320 feet</td>
<td>no artifacts</td>
</tr>
<tr>
<td>320 - 340 feet</td>
<td>1 oyster shell fragment</td>
</tr>
<tr>
<td>340 - 360 feet</td>
<td>no artifacts</td>
</tr>
<tr>
<td>360 - 380 feet</td>
<td>no artifacts</td>
</tr>
<tr>
<td>380 - 400 feet</td>
<td>1 glass four hole button. 7/16 inch diameter</td>
</tr>
<tr>
<td>400 - 420 feet</td>
<td>no artifacts</td>
</tr>
<tr>
<td>420 - 440 feet</td>
<td>2 oyster shell fragments</td>
</tr>
<tr>
<td>440 - 460 feet</td>
<td>no artifacts</td>
</tr>
<tr>
<td>460 - 480 feet</td>
<td>1 brick fragment, well fired: weight 389.1 grams</td>
</tr>
<tr>
<td>480 - 500 feet</td>
<td>1 white quartz flake, distal end</td>
</tr>
<tr>
<td>500 - 520 feet</td>
<td>no artifacts</td>
</tr>
<tr>
<td>520 - 540 feet</td>
<td>no artifacts</td>
</tr>
<tr>
<td>540 - 560 feet</td>
<td>no artifacts</td>
</tr>
</tbody>
</table>
| 560 - 580 feet | 2 brick fragment: weight 21.7 grams  
|              | 1 black chert flake, whole. Bifacial thinning flake  
|              | 1 white quartz flake, distal end. Cobble reduction |
| 580 - 600 feet | 1 brick fragment: weight 136.5 grams |
600 - 620 feet
1 blackened brick fragment with mold mark:
  weight 190 grams
1 small brick fragment: weight 2.9 grams
1 fragment whiteware/pearlware. Shallow bowl rim sherd
  with basal kick.

620 - 640 feet
1 oyster shell fragment
3 brick fragments. One with sand glaze on two sides.
  weight 47.1 grams

640 - 660 feet
2 oyster shell fragments
3 well fired brick fragments: weight 15.9 grams

660 - 680 feet
1 oyster shell fragment
1 piece white salt glazed stoneware
1 brick fragment: weight 7.1 grams

680 - 700 feet
3 brick fragments: weight 11.1 grams
1 quartzite fire cracked rock
1 small quartz flake

700 - 720 feet
1 oyster shell fragment
1 brick fragment: weight 74.0 grams
1 fragment aboriginal pottery. Unclassifiable
1 quartz flake. Biface thinning
1 fragment projectile point. Piscataway type

720 - 740 feet
1 oyster shell fragment
1 quartzite biface fragment

740 - 760 feet
2 oyster shell fragments
1 quartz flake

760 - 780 feet
2 oyster shell fragments
1 quartz flake fragment
1 blue rhyolite flake
1 shell tempered aboriginal pot sherd. Unclassifiable
780 - 800 feet
4 oyster shell fragments
1 brick fragment: weight 12.5 grams
2 quartz flakes
1 thick triangular quartz biface

800 - 820 feet
5 oyster shell fragments
1 quartz flake, proximal end

820 - 840 feet
1 quartz flake, distal end. secondary thinning

840 - 860 feet
5 oyster shell fragments
1 fragment clear bottle glass
1 small quartz flake

860 - 880 feet
2 oyster shell fragments

880 - 900 feet
5 oyster shell fragments
1 fragment pearlware

900 - 920 feet
4 oyster shell fragments
1 fragment semi-vitreous ceramics
1 quartzite flake, distal end
1 quartzite core or fire cracked rock

920 - 940 feet
5 oyster shell fragments
1 fragment red bodied earthen ware, no glaze
1 quartzite flake

940 - 960 feet
10 oyster shell fragments. Feature present

960 - 980 feet
3 oyster shell fragments
1 fragment metal
1 quartzite fire cracked rock
Row Two

0 - 20 feet
1 oyster shell fragment

20 - 40 feet
no artifacts

40 - 60 feet
no artifacts

60 - 80 feet
2 oyster shell fragments

80 - 100 feet
no artifacts

100 - 120 feet
4 oyster shell fragments
1 coal fragment

120 - 140 feet
1 quartz biface, thick, 2 1/4" long

140 - 160 feet
1 fragment light aqua window glass
1 fragment grey bodied stoneware, drab green glaze

160 - 180 feet
1 quartz flake, distal end. Cortex present. cobble reduction

180 - 200 feet
1 fragment undecorated whiteware, body sherd
1 fragment light olive bottle glass

200 - 220 feet
1 fragment undecorated whiteware, body sherd
1 fragment buff paste ceramic, Buff and blue colored decoration

220 - 240 feet
1 brick fragment well fired, weight 260.9 grams

240 - 260 feet
1 coal fragment
260 - 280 feet
  2 oyster shell fragments
  1 brick fragment, grey exterior: weight 42.0 grams

280 - 300 feet
  6 oyster shell fragments
  1 quartz flake: secondary reduction

300 - 320 feet
  1 oyster shell fragment
  1 brick fragment: weight 33.4 grams
  1 quartz flake, proximal end, hinge termination

320 - 340 feet
  3 oyster shell fragments
  1 fragment light aqua window glass
  1 brick fragment, sandy: weight 5.7 grams

340 - 360 feet
  1 fragment olive bottle glass
  1 quartzite fire cracked rock

360 - 380 feet
  no artifacts

380 - 400 feet
  2 oyster shell fragments

400 - 420 feet
  no artifacts

420 - 440 feet
  3 oyster shell fragments

440 - 460 feet
  2 oyster shell fragments

460 - 480 feet
  1 oyster shell fragment
  1 brick fragment: weight 120.5 grams

480 - 500 feet
  no artifacts

500 - 520 feet
  3 oyster shell fragments
520 - 540 feet
  1 oyster shell fragment
  1 quartz flake

540 - 560 feet
  2 oyster shell fragments
  1 quartz flake, distal end. secondary reduction

560 - 580 feet
  3 oyster shell fragments

580 - 600 feet
  2 oyster shell fragments
  1 whiteware body sherd
  1 fragment light aqua window glass

600 - 620 feet
  2 oyster shell fragments
  1 quartz flake, proximal end. secondary reduction
  1 rhyolite flake. secondary reduction

620 - 640 feet
  2 oyster shell fragments
  1 brick fragment, blackened: weight 142.6 grams
  4 fragments well fired brick: weight 159.7 grams
  1 fragment grey bodied stoneware. tan & orange exterior

640 - 660 feet
  2 brick fragments with mold marks: weight 147.3 grams
  1 brick fragment: weight .8 grams
  1 quartz flake, secondary thinning

660 - 680 feet
  2 oyster shell fragments
  1 rhyolite flake
  1 stemmed quartz projectile point.

680 - 700 feet
  3 oyster shell fragments
  2 brick fragments: weight 10.3 grams
  1 fragment dark olive bottle glass
  1 quartz fire cracked rock
  1 quartz flake, distal end
700 - 720 feet
1 oyster shell fragment
1 flat piece of metal
1 quartz flake, proximal end, cortex on dorsal side, cobble reduction
1 quartz distal flake, secondary reduction
1 quartz flake, secondary reduction
1 grey chert flake
1 Piscataway type projectile point

720 - 740 feet
1 oyster shell fragment
1 quartzite fire cracked rock
1 quartz flake, distal end
1 chert flake

740 - 760 feet
3 oyster shell fragments
1 large quartz flake with cortex, cobble reduction
1 quartz flake, distal end, cobble reduction
1 quartz chunk
1 quartz biface, Projectile point mid-section

760 - 780 feet
9 oyster shell fragments
1 fragment clear bottle glass
1 quartz flake, secondary reduction

780 - 800 feet
4 oyster shell fragments

800 - 820 feet
12 oyster shell fragments

820 - 840 feet
43 oyster shell fragments
1 quartzite fire cracked rock
Feature visible

840 - 860 feet
19 oyster shell fragments
1 quartz flake, distal end

860 - 880 feet
14 oyster shell fragments
1 quartz flake, distal end

880 - 900 feet
6 oyster shell fragments
1 quartz cobble fragment, Possible bi-polar concussion

900 - 920 feet
21 oyster shell fragments
1 hammerstone
1 quartz fire cracked rock
1 quartzite fire cracked rock
1 quartz flake cortex present, cobble reduction
1 quartz flake, proximal end
1 quartz flake
1 chert flake, mostly cortex

920 - 940 feet
316 oyster shell fragments (plus many other small pieces)
1 quartzite flake with cortex, cobble reduction
1 quartzite fire cracked rock

940 - 960 feet
100's oyster shell fragments. Two features exposed

East feature (oyster shell not included)
14 fragments soft shell clam
9 terrestrial snail shells
1 barnacle fragment
1 very small slipper shell
5 fish vertebrae (1 id for white perch)
31 fish scale fragments
15 small fish bones (ribs and rays)
1 quartzite flake
charcoal fragments
calcium depositis visible on some shells

West feature (oyster shell not included)
1 shell tempered aboriginal potsherd. Smoothed exterior
(Townsend/Rappahannock series)
1 quartz distal flake
2 fragments fish vertebrae
2 fragments fish scales
1 deer phalange, distal end
1 fish branchiostygeal
6 small bones
2 very small slipper shells
5 fragments soft shell clam
4 terrestrial snail shells
charcoal fragments
Row 3

0 - 20 feet
1 oyster shell fragment
2 coal fragments
3 brick fragments: weight 125.6 grams
1 cut or wrought nail
1 fragment clear bottle glass
1 fragment light olive bottle glass

20 - 40 feet
5 oyster shell fragments
2 brick fragments: weight 7.5 grams
1 fragment modern green bottle glass
1 fragment clear glass dish with geometric decoration

40 - 60 feet
3 oyster shell fragments
1 large brick fragment. Blackened one side: weight 246.8 grams

60 - 80 feet
1 oyster shell fragment

80 - 100 feet
3 oyster shell fragments
1 brick fragment: weight 3.5 grams

100 - 120 feet
4 oyster shell fragments

120 - 140 feet
1 fragments whiteware/pearlware. Shell edge with cobalt painted around rim

140 - 160 feet
1 oyster shell fragment
1 grey salt glazed stoneware rim sherd. Large vessel

160 - 180 feet
1 oyster shell fragment

180 - 200 feet
1 coal fragment
1 fragment semi-vitreous ceramics

200 - 220 feet
no artifacts

220 - 240 feet
no artifacts
240 - 260 feet
   1 oyster shell fragment

260 - 280 feet
   1 oyster shell fragment

280 - 300 feet
   1 oyster shell fragment
   3 quartz chunks

300 - 320 feet
   2 oyster shell fragment
   1 fragment clear bottle glass, polygonal shape
   1 fragment red bodied earthenware, no glaze
   1 small quartz flake, distal end
   1 quartz flake crushed platform
   1 quartz flake with cortex, cobble reduction

320 - 340 feet
   4 oyster shell fragments

340 - 360 feet
   1 quartz core
   1 quartz flake, cobble reduction

360 - 380 feet
   1 oyster shell fragment
   1 coal fragment

380 - 400 feet
   1 cobble fragment bifacially worked
   1 quartz chunk with cortex, cobble reduction

400 - 420 feet
   no artifacts

420 - 440 feet
   4 oyster shell fragments

440 - 460 feet
   3 oyster shell fragments
   1 quartz cobble chunk

460 - 480 feet
   2 oyster shell fragments
<table>
<thead>
<tr>
<th>Depth Range</th>
<th>Artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>480 - 500 feet</td>
<td>2 oyster shell fragments, 1 small chert flake, proximal end, secondary reduction</td>
</tr>
<tr>
<td>500 - 520 feet</td>
<td>2 oyster shell fragments, 1 quartz projectile point, Piscataway type</td>
</tr>
<tr>
<td>520 - 540 feet</td>
<td>2 oyster shell fragments</td>
</tr>
<tr>
<td>540 - 560 feet</td>
<td>3 oyster shell fragments, 1 brick fragment: weight 30.2 grams, 1 clay pipe bowl fragment with vertical linear sculpting, 1 quartz flake, medial portion, 1 quartz cobble core with cortex</td>
</tr>
<tr>
<td>560 - 580 feet</td>
<td>7 oyster shell fragments, 2 brick fragments: weight 27.3 grams, 1 quartz flake, medial portion, 1 quartz flake with cortex, cobble reduction</td>
</tr>
<tr>
<td>580 - 600 feet</td>
<td>8 oyster shell fragments, 2 brick fragments: weight 6.0 grams, 1 quartzite fire cracked rock, 1 quartz flake, possible bipolar concussion</td>
</tr>
<tr>
<td>600 - 620 feet</td>
<td>10 oyster shell fragments, 3 brick fragments: weight 65.1 grams, 1 fragment grey stoneware, 1 fragment whiteware/pearlware with green on rim, 1 quartz flake, 1 quartz chunk, no cortex</td>
</tr>
<tr>
<td>620 - 640 feet</td>
<td>16 oyster shell fragments, 1 brick fragment: weight 1.1 gram, 1 quartzite flake, distal end</td>
</tr>
<tr>
<td>640 - 660 feet</td>
<td>19 oyster shell fragments, 1 fragment tan/buff salt glaze stone ware, Thick body</td>
</tr>
</tbody>
</table>
660 - 680 feet
- 11 oyster shell fragments
- 1 quartz flake with cortex, cobble reduction. Possible bipolar concussion

680 - 700 feet
- 9 oyster shell fragments
- 2 brick fragments: weight 33.0 grams
- 1 quartz flake, medial portion with cortex

700 - 720 feet
- 4 oyster shell fragments

720 - 740 feet
- 5 oyster shell fragments
- 1 flaked quartz cobble
- 1 quartz flake with cortex, cobble reduction
- 1 lobate quartz projectile point. Piscataway type
- 1 lanceolate rhyolite projectile point. Steubenville type

740 - 760 feet
- 9 oyster shell fragments
- 1 quartz chunk

760 - 780 feet
- 9 oyster shell fragments
- 1 fragment shell edge pearlware/whiteware, rim sherd late variety
- 1 quartz flake, distal portion
- 1 bifacially flaked quartz cobble

780 - 800 feet
- 4 oyster shell fragments

Row four

0 - 20 feet
- 4 oyster shell fragments
- 5 fragments clear bottle glass
- 1 fragment clear glass undetermined vessel form
20 - 40 feet
2 oyster shell fragments
2 brick fragments: weight 2.5 grams
13 fragments clear bottle glass
1 fragment green bottle glass
1 fragment brown bottle glass

40 - 60 feet
2 oyster shell fragments
1 brick fragments: weight 2.5 grams
1 fragment green bottle glass

50 - 80 feet
no artifacts

80 - 100 feet
1 oyster shell fragment

100 - 120 feet
2 oyster shell fragments

120 - 140 feet
2 oyster shell fragments
1 coal fragment
1 fragment thermally altered olive bottle glass

140 - 160 feet
1 oyster shell fragment

160 - 180 feet
2 oyster shell fragments

180 - 200 feet
2 oyster shell fragments
1 fragment brick, well fired: weight 28.8 grams
1 fragment thermally altered ceramics. blue glaze

200 - 220 feet
1 quartz flake, distal end
1 quartz chunk

220 - 240 feet
2 oyster shell fragments
1 brick fragment: weight 3.1 grams
1 fragment thermally altered olive bottle glass

240 - 260 feet
1 oyster shell fragment
1 coal fragment
1 fragment aqua glass
1 quartz flake with cortex, cobble reduction

260 - 280 feet
1 fragment thermally altered whiteware
1 quartz flake

280 - 300 feet
2 oyster shell fragments
1 coal fragment
1 brick fragment: weight 47.5 grams
1 fragment whiteware, rimsherd
2 quartz flakes, secondary thinning
1 quartz flake with cortex, cobble reduction

300 - 320 feet
5 oyster shell fragments
1 coal fragment
1 brick fragment: weight 1.4 grams

320 - 340 feet
no artifacts

340 - 360 feet
2 oyster shell fragment
1 small quartz flake, secondary thinning

360 - 380 feet
2 oyster shell fragments
1 brick fragment: weight 24.5 grams
1 large quartz triangular biface fragment

380 - 400 feet
1 oyster shell fragment
1 brick fragment: weight 5.3 grams
1 quartz flake

400 - 420 feet
3 oyster shell fragments
1 quartz flake, secondary thinning

420 - 440 feet
1 oyster shell fragment

440 - 460 feet
1 oyster shell fragment
1 large quartz flake, cobble reduction
1 quartz flake, secondary thinning

460 - 480 feet
1 quartz chunk
2 small quartz flakes, distal portion, secondary thinning

500 - 520 feet
2 oyster shell fragments
1 fragment clear window glass
1 fragment whiteware
1 quartz chunk
1 quartz flake, secondary thinning
1 quartzite flake, secondary thinning
1 lobate quartz projectile point fragment
Piscataway type

520 - 540 feet
5 oyster shell fragments
2 brick fragments: weight 19.5 grams
1 quartz flake, proximal end
1 quartz flake, secondary thinning

540 - 560 feet
3 oyster shell fragments
2 small quartz flakes

560 - 580 feet
2 oyster shell fragments
3 brick fragments: weight 26.4 grams
1 chert flake, distal portion, secondary thinning
1 quartz flake, distal portion

580 - 600 feet
6 oyster shell fragments
1 fragment shell edge whiteware/pearlware.
1 fragment thermally altered olive bottle glass
1 small quartz flake, distal portion
1 quartz flake with cortex, cobble reduction

600 - 620 feet
7 oyster shell fragment
5 brick fragments: weight 28.8 grams
1 fragment whiteware/pearlware, hard white paste cobalt in glaze.
1 pig femur, immature animal, saw and cut butchering marks on shaft

620 - 640 feet
7 oyster shell fragments
5 brick fragments: weight 23.6 grams
2 small quartz flakes, secondary thinning
3 quartz chunks
1 quartzite fire cracked rock
1 quartz projectile point fragment. Undetermined type
base missing

640 - 660 feet
3 oyster shell fragments
4 brick fragments, hard fired: weight 249.8 grams
1 fragment olive bottle glass
1 quartz biface fragment

117
1 quartz flake. secondary reduction

660 - 680 feet
1 oyster shell fragment
1 brick fragment: weight 1.8 grams
1 fragment clear bottle glass
1 quartz chunk

680 - 700 feet
4 oyster shell fragments
1 brick fragment: weight 28.1 gram
1 fragment porcelain
1 fragment grey bodied stoneware. blue decoration

700 - 720 feet
2 oyster shell fragments
1 brick fragment. glazed green. bored hole: weight 264.4 grams
2 brick fragments: weight 45.2 grams
3 quartzite fire cracked rocks
2 quartz chunks
1 quartzite flake
1 quartz flake

720 - 740 feet
4 oyster shell fragments
1 fragment clear bottle glass
1 fragment transfer printed pearlware
1 Rhyolite stemmed projectile point. Selby Bay type

740 - 760 feet
1 oyster shell fragment
1 fragment whiteware
1 hammerstone
1 quartz flake with cortex. cobble reduction

760 - 780 feet
2 oyster shell fragments

780 - 800 feet
4 oyster shell fragments
1 fragment grey bodied stoneware
800 - 820 feet
3 oyster shell fragments
1 brick fragment: weight 5.4 grams

Row five

0 - 20 feet
2 oyster shell fragments

20 - 40 feet
no artifacts

40 - 60 feet
no artifacts

60 - 80 feet
1 oyster shell fragment

80 - 100 feet
2 oyster shell fragments

100 - 120 feet
2 oyster shell fragments
3 fragments clear bottle glass

120 - 140 feet
1 oyster shell fragment

140 - 160 feet
6 oyster shell fragments
1 well fired brick fragment: weight 21.6 grams

160 - 180 feet
4 oyster shell fragments

180 - 200 feet
3 oyster shell fragments

200 - 220 feet
4 oyster shell fragments

220 - 240 feet
1 oyster shell fragment
2 coal fragments
240 - 260 feet
  5 oyster shell fragments

260 - 280 feet
  4 oyster shell fragments

280 - 300 feet
  1 oyster shell fragment

300 - 320 feet
  1 oyster shell fragment
  1 fragment red bodied earthen ware. no glaze

320 - 340 feet
  3 oyster shell fragments

340 - 360 feet
  3 oyster shell fragments

360 - 380 feet
  2 oyster shell fragments

380 - 400 feet
  3 oyster shell fragments

400 - 420 feet
  2 oyster shell fragments

420 - 440 feet
  3 oyster shell fragments

440 - 460 feet
  3 oyster shell fragments
  1 quartzite fire cracked rock
  2 quartz chunks
  1 quartz flake. proximal end. secondary thinning

460 - 480 feet
  5 oyster shell fragments
  1 brick fragment: weight 35.2 grams

480 - 500 feet
  1 oyster shell fragment

500 - 520 feet
  2 oyster shell fragments
  1 quartz flake. medial portion. secondary thinning

520 - 540 feet
  2 oyster shell fragments
540 - 560 feet
1 oyster shell fragments
1 brick fragment: weight 21.6 grams

560 - 580 feet
2 oyster shell fragments
1 fragment whiteware
1 quartz flake, secondary thinning

580 - 600 feet
2 oyster shell fragments
1 brick fragment: weight 6.5 grams
1 fragment pearlware
1 quartz fire cracked rock
3 quartz chunks
1 quartz flake with cortex, cobble reduction

600 - 620 feet
5 oyster shell fragments
2 brick fragments: weight 28.0 grams
1 fragment blackened brick: weight 18.75 grams
1 fragment underglazed painted polychrome pearlware/whiteware
1 fragment red bodied earthen ware, possible mocha glaze
1 quartz flake, secondary thinning

620 - 640 feet
5 oyster shell fragments
5 brick fragments: weight 44.0 grams
1 iron latch
1 fragment grey bodied stoneware, blue decoration
1 quartz flake, distal portion, secondary thinning

640 - 660 feet
7 oyster shell fragments
1 blackened brick fragment: weight 29.6 grams
4 brick fragments: weight 54.3 grams
1 stoneware rim sherd, mottled blue/tan surface grey paste
1 quartzite flake, distal portion
1 quartz chunk
1 chert flake, distal portion, secondary thinning
660 - 680 feet
3 oyster shell fragments
3 brick fragments: weight 47.3 grams
1 fragment semi-vitreous ceramics
1 fragment red bodied earthen ware, clear glaze

680 - 700 feet
6 oyster shell fragments
1 brick fragment: weight 3.0 grams
3 quartzite fire cracked rocks
1 quartz flake
1 quartzite flake

700 - 720 feet
3 oyster shell fragments

720 - 740 feet
4 oyster shell fragments

740 - 760 feet
3 oyster shell fragments
1 flat metal piece
2 quartz chunks
1 quartzite fire cracked rock
2 fragments small quartz bifaces, possible projectile point fragments, Piscataway type
3 quartz flakes

750 - 780 feet
8 oyster shell fragments
2 brick fragments: weight 123.6 grams

780 - 800 feet
4 oyster shell fragments
4 brick fragments: weight 16.5 grams
1 blackened brick fragment with glaze: weight 16.6 grams
1 ceramic pipe bowl fragment
1 quartzite fire cracked rock
1 quartzite flake
1 quartz flake
<table>
<thead>
<tr>
<th>Depth Range</th>
<th>Artifacts Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 20 feet</td>
<td>4 oyster shell fragments, 3 fragments clear bottle glass, 1 fragment clear bottle glass with twist off aluminum top, 1 fragment green bottle glass base.</td>
</tr>
<tr>
<td>20 - 40 feet</td>
<td>1 oyster shell fragment, 1 brick fragment: weight 10.1 grams, 1 cinder fragment, 4 fragments clear bottle glass, 1 fragment clear bottle glass base.</td>
</tr>
<tr>
<td>40 - 60 feet</td>
<td>2 oyster shell fragments, 1 quartzite fire cracked rock.</td>
</tr>
<tr>
<td>60 - 80 feet</td>
<td>2 oyster shell fragments, 1 brick fragment: weight 11.7 grams.</td>
</tr>
<tr>
<td>80 - 100 feet</td>
<td>2 brick fragments: weight 74.7 grams.</td>
</tr>
<tr>
<td>100 - 120 feet</td>
<td>1 brick fragment: weight 6.3 grams.</td>
</tr>
<tr>
<td>120 - 140 feet</td>
<td>No artifacts.</td>
</tr>
<tr>
<td>140 - 160 feet</td>
<td>3 oyster shell fragments.</td>
</tr>
<tr>
<td>160 - 180 feet</td>
<td>8 oyster shell fragments, 1 whiteware rim fragment. Possible barley pattern.</td>
</tr>
<tr>
<td>180 - 200 feet</td>
<td>4 oyster shell fragments.</td>
</tr>
<tr>
<td>200 - 220 feet</td>
<td>3 oyster shell fragments.</td>
</tr>
<tr>
<td>220 - 240 feet</td>
<td>1 oyster shell fragment.</td>
</tr>
<tr>
<td>240 - 260 feet</td>
<td>4 oyster shell fragments.</td>
</tr>
</tbody>
</table>
fragments

ants: weight 62.9 grams

fragments

fragments

ent: weight 3.8 grams

fragments

fragments

fragments

fragments

fragments

fragments

fragments

fragments

26
400 - 420 feet
   1 brick fragment: weight 224.3 grams

420 - 440 feet
   1 oyster shell fragment

440 - 460 feet
   no artifacts

460 - 480 feet
   no artifacts

480 - 500 feet
   no artifacts
SHOVEL TESTS

#1  No Artifacts

#2  1 very small brick fragment

#3  1 very small piece of coal

#4  1 very small brick fragment

#5  1 quartz flake, proximal end. Biface thinning flake
    1 quartz shatter fragment

#6  7 oyster shell fragments
    1 piece of light green glass, possible coke bottle frag.

#7  No Artifacts

#8  No Artifacts

#9  2 small brick fragments
    1 Aboriginal pot sherd. crushed quartz tempered
        eroded surface, friable paste
    1 small grey chert flake, proximal end. Biface thinning

#10 1 large quartzite cobble with at least three flake scars
    1 Aboriginal pot sherd. Shell tempered with some sand
        unknown surface treatment

#11 3 quartzite fire cracked rocks
    1 small black chert flake. Biface thinning flake
    1 aboriginal pot sherd. undetermined temper and
        surface treatment
    1 aboriginal pot sherd. undetermined temper. Probable
cord marked exterior LN1

#12 1 very small brick fragment
    3 oyster shell fragments
    1 quartz flake. biface thinning
    1 very small aboriginal pot sherd. undetermined
        temper and surface treatment
    1 aboriginal pot sherd. sand tempered Undetermined
        surface treatment

#13  No Artifacts

#14 1 cut or wrought nail fragment
    1 quartz flake, distal end. biface thinning
    1 grey chert flake, distal end. biface thinning
#15  No artifacts

#16  No artifacts

#17  1 brick fragment, (2"x1"x1"")

  1 quartzite fire cracked rock
  1 pearlware body sherd. no decoration

South Side Shovel Tests

A-1  No Artifacts
A-2  No Artifacts
A-3  No Artifacts
A-4  No Artifacts
A-5  No Artifacts
A-6  No Artifacts
A-7  No Artifacts
A-8  1 large brick fragment
B-1  No Artifacts
B-2  No Artifacts
B-3  No Artifacts
B-4  No Artifacts
B-5  No Artifacts
B-6  No Artifacts
B-7  No Artifacts
B-8  No Artifacts
B-9  No Artifacts
C-1  No Artifacts
C-2  No Artifacts
C-3  No Artifacts
C-4  No Artifacts
C-5  No Artifacts
C-6  No Artifacts
C-7  No Artifacts
C-8  No Artifacts
C-9  No Artifacts
D-1  No Artifacts
D-2  No Artifacts
D-3  No Artifacts
D-4  No Artifacts
D-5  No Artifacts
D-6  No Artifacts
D-7  No Artifacts
D-8  No Artifacts
D-9  No Artifacts
D-10 No Artifacts
Appendix G

Site Forms
MARYLAND ARCHAEOLOGICAL SITE SURVEY

Name of site OTTER
Number 19 CUZ 71
County CALVERT
Cultural affiliation 20TH CENT. HISTORIC

How to reach site FROM CALVERT MARINE MUSEUM, 3/4 MILES NORTH ON ARY SITE IN FIELD BEHIND HOUSES.

Landmarks to aid in finding site RAVINE HEAD

Position of site with respect to surrounding terrain ON SOUTH SIDE OF RAVINE HEAD

Latitude 38° 29' 54" north Longitude 76° 27' 54" west

Map used (name, producer, scale, date) TOPOGRAPHIC MAP OF CALVERT COUNTY.

Owner/tenant of site, address and attitude toward investigation LARRY D. LAWSON

Description of site (size, depth, soil, features, test pits) UNKNOWN AT THIS TIME

Present use and condition of site, erosion AGRICULTURE TO BE DEVELOPED

Reports or evidence of disturbance by excavation, construction or "pothunting" NONE

Nature, direction and distance of natural water supply (fresh or salt) 100' NE FRESH

Natural fauna and flora

Specimens collected (specify kinds and quantities of artifacts and materials) BRICK, WHITWARE

Specimens observed, owner, address BRICK, WHITWARE, STONEWARE, OYSTER SHELLS

Specimens reported, owner, address

Other records (notes, photos, maps, bibliography) ARCHAEOLOGICAL SURVEY OF THE PHASE ONE CONSTRUCTION AREA OF PATUXENT POINT, SOLOMONS ISLAND, MD. (OTTER 1987)

Recommendations for further investigations SURVEY AND TEST SITE.

Informant Address Date

Site visited by Address Date

Recorded by EDMOND OTTER Address Date 3-87

(Use reverse side of sheet and additional pages for sketches of site and artifacts)

Send completed form to State Archeologist, Maryland Geological Survey The Johns Hopkins University, Baltimore, Md. 21218
MARYLAND ARCHEOLOGICAL SITE SURVEY

Name of site OTTER 2
Other designations
Type of site Archaeological Site
How to reach site FROM CALVERT MARINE MUSEUM. TURN L. JUST NORTH OF U.S. NAVY SOLOMONS ANNEX
SITE IN FIELD BEHIND HOUSES.
Position of site with respect to surrounding terrain AT STREAM HEAD ON NE SIDE OF FIELD

Position of site with respect to surrounding terrain AT STREAM HEAD ON NE SIDE OF FIELD

Latitude 38° 24' 54" north Longitude 76° 27' 48" west.

Present use and condition of site, erosion AGRICULTURE TO BE DEVELOPED

Nature, direction and distance of natural water supply (fresh or salt) 50 FEET NW (FRESH)

Natural fauna and flora

Specimens collected (specify kinds and quantities of artifacts and materials)
- PIKEATWAY PIECES
- SLABBY BAY PIECES
- LITHICS
- LATE WOODLAND POTTERY

Specimens observed, owner, address

Specimens reported, owner, address

Other records (notes, photos, maps, bibliography) ARCHAEOLOGICAL SURVEY OF THE PHASE I CONSTRUCTION AREA OF PATUXENT POINT, SOLOMONS ISLAND, CALVERT CO, MD, OTTER 1987

Recommendations for further investigations REMOVE FEATURES, SURVEY, ENTIRE SITE

Informant Address Date
Site visited by Date
Recorded by EDWARD ETHER Date 5-8-1

Send completed form to State Archeologist, Maryland Geological Survey The Johns Hopkins University, Baltimore, Md. 21218
Otter, Ed.
Arch. Survey of Phase One Const.
1987 Area Patuxent Pt. Solomons